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2.1. Introduction. This chapter contains results related to finding the integration of a given function 
which help students in further studies of curves in various fields. 

2.1.1. Objective. The objective of these contents is to provide some important results to the reader like: 

(i) Integration. 
(ii) Definite integrals. 
(iii) Finding area. 
(iv) Leontiff Input-Output Model. 

2.1.2. Keywords. Integrate, Model, Definite Integral. 
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2.2. Integration. We will consider the inverse process of differentiation. In differentiation, we find the 
differential co-efficient of a given function while in integration if we are given the differential co-
efficient of a function, we have to find the function. That is why integration is called anti-derivative i.e. 
in differentiation if 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) we find  𝑑𝑑𝑦𝑦

𝑑𝑑𝑥𝑥
. In integration, we are given 𝑑𝑑𝑦𝑦

𝑑𝑑𝑥𝑥
 and we have to find 𝑦𝑦. This 

integration is also called indefinite integral. 

2.2.1. Definition of Integration 

Integration is the inverse process of differentiation. 

If 𝑑𝑑
𝑑𝑑𝑥𝑥

[𝜑𝜑(𝑥𝑥)] =  𝑓𝑓(𝑥𝑥) then 

 𝜑𝜑(𝑥𝑥) is called the integral or anti-derivative or primitive of 𝑓𝑓(𝑥𝑥) with respect to 𝑥𝑥. 

Symbolically, it is written as 

 ∫𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 =  𝜑𝜑(𝑥𝑥) 

The symbol ∫ 𝑑𝑑𝑥𝑥 denotes integration w.r.t. 𝑥𝑥. Here 𝑑𝑑𝑥𝑥 conveys that 𝑥𝑥 is a variable of integration. The 
given function whose integral is to be found, is known as integrand. 

2.2.2. Example.  𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑥𝑥2) =  2𝑥𝑥 

             ∴  ∫2𝑥𝑥  𝑑𝑑𝑥𝑥 = 𝑥𝑥2. 

2.2.3. Constant of integration 

We know that 𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑥𝑥3) =  3𝑥𝑥2 

Therefore integral of 3𝑥𝑥2 may be 𝑥𝑥3, 𝑥𝑥3 + 1 or 𝑥𝑥3 + 𝐶𝐶 where 𝐶𝐶 is any arbitrary constant. Thus  

 ∫3𝑥𝑥2 𝑑𝑑𝑥𝑥 =  𝑥𝑥3 + 𝐶𝐶 

2.2.4.Example.  Find ∫5𝑥𝑥6 𝑑𝑑𝑥𝑥 

Solution.  ∫5𝑥𝑥6 𝑑𝑑𝑥𝑥 = 5∫𝑥𝑥6 𝑑𝑑𝑥𝑥 = 5 × 𝑥𝑥7

7
+ 𝐶𝐶 = 5

7
𝑥𝑥7 + 𝐶𝐶 

2.2.5. Standard Formulae 

1. ∫𝑥𝑥𝑛𝑛  𝑑𝑑𝑥𝑥 =  𝑥𝑥
𝑛𝑛+1

𝑛𝑛+1
+  𝐶𝐶,   𝑛𝑛 ≠ −1    � 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 𝑑𝑑

𝑑𝑑𝑥𝑥
�𝑥𝑥

𝑛𝑛+1

𝑛𝑛+1
� = 𝑥𝑥𝑛𝑛� 

2. ∫ 1
𝑥𝑥
𝑑𝑑𝑥𝑥 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑥𝑥 + 𝐶𝐶          �𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 𝑑𝑑

𝑑𝑑𝑥𝑥
(𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑥𝑥) = 1

𝑥𝑥
 � 

3. ∫ 𝑠𝑠𝑥𝑥  𝑑𝑑𝑥𝑥 =  𝑠𝑠𝑥𝑥 +  𝐶𝐶,       � 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑠𝑠𝑥𝑥) = 𝑠𝑠𝑥𝑥� 

4. ∫𝑎𝑎𝑥𝑥  𝑑𝑑𝑥𝑥 =  𝑎𝑎𝑥𝑥

𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑎𝑎
+  𝐶𝐶,       � 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 𝑑𝑑

𝑑𝑑𝑥𝑥
� 𝑎𝑎𝑥𝑥

𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑎𝑎
� = 𝑎𝑎𝑥𝑥� 

5. ∫ 𝑠𝑠𝑎𝑎𝑥𝑥+𝑏𝑏  𝑑𝑑𝑥𝑥 =  𝑠𝑠
𝑎𝑎𝑥𝑥 +𝑏𝑏

𝑎𝑎
+  𝐶𝐶,       � 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 𝑑𝑑

𝑑𝑑𝑥𝑥
(𝑠𝑠𝑎𝑎𝑥𝑥+𝑏𝑏) = 𝑎𝑎𝑠𝑠𝑎𝑎𝑥𝑥+𝑏𝑏� 
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6. ∫(𝑎𝑎𝑥𝑥 + 𝑏𝑏)𝑛𝑛  𝑑𝑑𝑥𝑥 =  (𝑎𝑎𝑥𝑥+𝑏𝑏)𝑛𝑛+1

𝑎𝑎(𝑛𝑛+1)
+  𝐶𝐶,      � 𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 𝑑𝑑

𝑑𝑑𝑥𝑥
�(𝑎𝑎𝑥𝑥+𝑏𝑏)𝑛𝑛+1

𝑎𝑎(𝑛𝑛+1)
� = (𝑎𝑎𝑥𝑥 + 𝑏𝑏)𝑛𝑛�  (𝑠𝑠𝑓𝑓 𝑛𝑛 ≠ −1)  

7. ∫ 𝑑𝑑𝑥𝑥
𝑎𝑎𝑥𝑥+𝑏𝑏

𝑑𝑑𝑥𝑥 = 1
𝑎𝑎

log|𝑎𝑎𝑥𝑥 + 𝑏𝑏| + 𝐶𝐶          �𝑠𝑠𝑠𝑠𝑛𝑛𝑠𝑠𝑠𝑠 𝑑𝑑
𝑑𝑑𝑥𝑥
�log|𝑎𝑎𝑥𝑥+𝑏𝑏|

𝑎𝑎
� = 1

𝑎𝑎𝑥𝑥+𝑏𝑏
 � 

2.2.6. Theorem. The integral of the product of a constant and a function is equal to the product of a 
constant, and integral of the function i.e., ∫𝑘𝑘𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑘𝑘 ∫𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥, 𝑘𝑘 being a constant. 

Proof.  Let ∫𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝜑𝜑(𝑥𝑥),   ∴  𝑑𝑑
𝑑𝑑𝑥𝑥

[𝜑𝜑(𝑥𝑥)] = 𝑓𝑓(𝑥𝑥) 

Now  𝑑𝑑
𝑑𝑑𝑥𝑥

[𝑘𝑘𝜑𝜑(𝑥𝑥)] = 𝑘𝑘. 𝑑𝑑
𝑑𝑑𝑥𝑥

[𝜑𝜑(𝑥𝑥)] 

[ Since, the derivative of the product of a constant and a function is equal to the product of the constant 
and the derivative of the function] 

   = 𝑘𝑘𝑓𝑓(𝑥𝑥)           �𝑎𝑎𝑠𝑠  𝑑𝑑
𝑑𝑑𝑥𝑥

[𝜑𝜑(𝑥𝑥)] = 𝑓𝑓(𝑥𝑥)� 

Thus, by definition 

 ∫𝑘𝑘. 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑘𝑘.𝜑𝜑(𝑥𝑥) = 𝑘𝑘.∫𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥. 

2.2.7. Theorem. The integral of the sum or the difference of two functions is equal to the sum or 
difference of their integrals i.e., ∫[𝑓𝑓1(𝑥𝑥) ± 𝑓𝑓2(𝑥𝑥)]𝑑𝑑𝑥𝑥 =  ∫𝑓𝑓1(𝑥𝑥)𝑑𝑑𝑥𝑥 ± ∫𝑓𝑓2(𝑥𝑥)𝑑𝑑𝑥𝑥. 

Proof. Let ∫𝑓𝑓1(𝑥𝑥)𝑑𝑑𝑥𝑥 =  𝜑𝜑1(𝑥𝑥)  and  ∫𝑓𝑓2(𝑥𝑥)𝑑𝑑𝑥𝑥 =  𝜑𝜑2(𝑥𝑥) 

Therefore,  

  𝑑𝑑
𝑑𝑑𝑥𝑥

[𝜑𝜑1(𝑥𝑥)] =  𝑓𝑓1(𝑥𝑥)  and  𝑑𝑑
𝑑𝑑𝑥𝑥

[𝜑𝜑2(𝑥𝑥)] =  𝑓𝑓2(𝑥𝑥) 

Now    𝑑𝑑
𝑑𝑑𝑥𝑥

[𝜑𝜑1(𝑥𝑥) ± 𝜑𝜑2(𝑥𝑥)] =  𝑑𝑑
𝑑𝑑𝑥𝑥

[𝜑𝜑1(𝑥𝑥)] ± 𝑑𝑑
𝑑𝑑𝑥𝑥

[𝜑𝜑2(𝑥𝑥)] =  𝑓𝑓1(𝑥𝑥)  ± 𝑓𝑓2(𝑥𝑥)  

[Since, the derivative of the sum or difference of two functions is equal to the sum or difference of their 
derivatives]. 

Therefore, by definition of the integral of a function 

 ∫[𝑓𝑓1(𝑥𝑥) ± 𝑓𝑓2(𝑥𝑥)]𝑑𝑑𝑥𝑥 = 𝜑𝜑1(𝑥𝑥) ± 𝜑𝜑2(𝑥𝑥) = ∫ 𝑓𝑓1(𝑥𝑥)𝑑𝑑𝑥𝑥 ± ∫𝑓𝑓2(𝑥𝑥)𝑑𝑑𝑥𝑥. 

Remark. We can extend this theorem to a finite number of functions and can have the following result. 

 ∫[𝑓𝑓1(𝑥𝑥) ± 𝑓𝑓2(𝑥𝑥) ± ⋯± 𝑓𝑓𝑛𝑛(𝑥𝑥)]𝑑𝑑𝑥𝑥 =  ∫𝑓𝑓1(𝑥𝑥)𝑑𝑑𝑥𝑥 ±  ∫ 𝑓𝑓2(𝑥𝑥)𝑑𝑑𝑥𝑥 ± ⋯± ∫𝑓𝑓𝑛𝑛(𝑥𝑥)𝑑𝑑𝑥𝑥 . 

2.2.8. Example. Write down the integral of 

(i)  𝑥𝑥2     (ii) 𝑥𝑥−9   (iii) 1 

(iv) √𝑥𝑥   (v) 1
𝑥𝑥2    (vi) 𝑥𝑥−2/3 

Solution.  

(i) ∫ 𝑥𝑥2𝑑𝑑𝑥𝑥 =  𝑥𝑥
2+1

2+1
+ 𝐶𝐶 =  1

3
𝑥𝑥3 + 𝐶𝐶 
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 (ii) ∫𝑥𝑥−9𝑑𝑑𝑥𝑥 =  𝑥𝑥
−9+1

−9+1
+ 𝐶𝐶 =  1

−8
𝑥𝑥−8 + 𝐶𝐶 = − 1

8𝑥𝑥8 + 𝐶𝐶 

  (iii) ∫1𝑑𝑑𝑥𝑥 =  ∫𝑥𝑥0𝑑𝑑𝑥𝑥 = 𝑥𝑥
0+1

0+1
+ 𝐶𝐶 =  𝑥𝑥 + 𝐶𝐶 

(iv) ∫ 𝑥𝑥1/2𝑑𝑑𝑥𝑥 =  𝑥𝑥
1/2+1

1/2+1
+ 𝐶𝐶 =  2

3
𝑥𝑥3/2 + 𝐶𝐶 

(v)  ∫ 1
𝑥𝑥2 𝑑𝑑𝑥𝑥 =  ∫𝑥𝑥−2𝑑𝑑𝑥𝑥 =  𝑥𝑥

−2+1

−2+1
+ 𝐶𝐶 =  − 1

𝑥𝑥
+ 𝐶𝐶 

(vi)  ∫ 𝑥𝑥−2/3𝑑𝑑𝑥𝑥 =  𝑥𝑥
−2/3+1

−2/3+1
+ 𝐶𝐶 =  3𝑥𝑥1/3 + 𝐶𝐶. 

2.2.9. Example. Find the integrals of the following 

(i)  √𝑥𝑥 − 1
√𝑥𝑥

     (ii) (1+𝑥𝑥)2

𝑥𝑥3    (iii) 𝑥𝑥4

𝑥𝑥2+1
 

(iv) 𝑥𝑥√𝑥𝑥 + 2    (v) (1 + 𝑥𝑥)√1 − 𝑥𝑥    

Solution.  

 (i) ∫√𝑥𝑥 − 1
√𝑥𝑥

 𝑑𝑑𝑥𝑥 =  ∫�𝑥𝑥1/2 − 𝑥𝑥−1/2�𝑑𝑑𝑥𝑥 

   = 𝑥𝑥3/2

3/2
− 𝑥𝑥1/2

1/2
= 2𝑥𝑥3/2

3
− 2𝑥𝑥1/2 + 𝐶𝐶 

(ii) ∫ (1+𝑥𝑥)2

𝑥𝑥3  𝑑𝑑𝑥𝑥 =  ∫ �1+2𝑥𝑥+𝑥𝑥2

𝑥𝑥3 �𝑑𝑑𝑥𝑥 =  ∫ � 1
𝑥𝑥3 + 2

𝑥𝑥2 + 1
𝑥𝑥
� 𝑑𝑑𝑥𝑥 

            =  ∫𝑥𝑥−3 𝑑𝑑𝑥𝑥 + 2 ∫ 𝑥𝑥−2 𝑑𝑑𝑥𝑥 +  ∫ 1
𝑥𝑥
𝑑𝑑𝑥𝑥 

             = 𝑥𝑥−2

−2
+ 2 𝑥𝑥−1

−1
+ 𝑙𝑙𝑙𝑙𝑙𝑙𝑥𝑥 + 𝐶𝐶 

        = − 1
2𝑥𝑥2 −

2
𝑥𝑥

+ log 𝑥𝑥 + 𝐶𝐶. 

(iii) ∫ 𝑥𝑥4

𝑥𝑥2+1
 𝑑𝑑𝑥𝑥 =  ∫ �

�𝑥𝑥4−1�+1
𝑥𝑥2+1

�𝑑𝑑𝑥𝑥 

  =  ∫ 𝑥𝑥4−1
𝑥𝑥2+1

𝑑𝑑𝑥𝑥 +  ∫ 1
𝑥𝑥2+1

𝑑𝑑𝑥𝑥 =  ∫(𝑥𝑥2 − 1) 𝑑𝑑𝑥𝑥 +  ∫ 1
𝑥𝑥2+1

𝑑𝑑𝑥𝑥 

   = 𝑥𝑥3

3
− 𝑥𝑥 + tan−1 𝑥𝑥 + 𝐶𝐶 

(iv) I = ∫𝑥𝑥√𝑥𝑥 + 2𝑑𝑑𝑥𝑥 

 = ∫[(𝑥𝑥 + 2) − 2]√𝑥𝑥 + 2 𝑑𝑑𝑥𝑥 

 = ∫(𝑥𝑥 + 2)√𝑥𝑥 + 2  𝑑𝑑𝑥𝑥 −  ∫ 2√𝑥𝑥 + 2 𝑑𝑑𝑥𝑥 

 = ∫(𝑥𝑥 + 2)3/2 𝑑𝑑𝑥𝑥 − 2∫(𝑥𝑥 + 2)1/2 𝑑𝑑𝑥𝑥 

 = (𝑥𝑥+2)5/2

5/2
− 2 (𝑥𝑥+2)3/2

3/2
+ 𝐶𝐶 
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 = 2
5

(𝑥𝑥 + 2)5/2 − 4
3

(𝑥𝑥 + 2)3/2 + 𝐶𝐶.         

(v) I = ∫(1 + 𝑥𝑥)√1 − 𝑥𝑥 𝑑𝑑𝑥𝑥 

 = ∫[2 − (1 − 𝑥𝑥)]√1 − 𝑥𝑥 𝑑𝑑𝑥𝑥 

  = 2 ∫(1 − 𝑥𝑥)1/2 𝑑𝑑𝑥𝑥 − ∫(1 − 𝑥𝑥)3/2 𝑑𝑑𝑥𝑥 

 = 2(1−𝑥𝑥)3/2

−3/2
− (1−𝑥𝑥)5/2

−5/2
+ 𝐶𝐶 

 = − 4
5

(1 − 𝑥𝑥)3/2 + 2
5

(1 − 𝑥𝑥)5/2 + 𝐶𝐶.    

2.2.10. Example. Integrate 𝑎𝑎3𝑥𝑥+3 𝑑𝑑𝑥𝑥, 𝑎𝑎 ≠  −1 

Solution. I = ∫ 𝑎𝑎3𝑥𝑥+3𝑑𝑑𝑥𝑥 =  ∫𝑎𝑎3𝑥𝑥 .𝑎𝑎3𝑑𝑑𝑥𝑥 

  = 𝑎𝑎3 ∫ 𝑎𝑎3𝑥𝑥𝑑𝑑𝑥𝑥 

 = 𝑎𝑎3 ∫ 𝑠𝑠3𝑥𝑥 log 𝑎𝑎𝑑𝑑𝑥𝑥   (Since 𝑠𝑠log 𝑓𝑓(𝑥𝑥) = 𝑓𝑓(𝑥𝑥) 

Therefore,  𝑠𝑠log 𝑎𝑎3𝑥𝑥 = 𝑎𝑎3𝑥𝑥  

Also  𝑠𝑠log  𝑎𝑎3𝑥𝑥 = 𝑠𝑠3𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙  𝑎𝑎  

Therefore,  𝑎𝑎3𝑥𝑥 = 𝑠𝑠3𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙  𝑎𝑎  

 = 𝑎𝑎3 ∫ 𝑠𝑠(3 log 𝑎𝑎)𝑥𝑥𝑑𝑑𝑥𝑥 

  = 𝑎𝑎3 𝑠𝑠 (3 log 𝑎𝑎)𝑥𝑥

3 log 𝑎𝑎
+ 𝐶𝐶 

  = 𝑎𝑎3 𝑠𝑠3𝑥𝑥 log 𝑎𝑎

3 log 𝑎𝑎
+ 𝐶𝐶 =  𝑎𝑎

3𝑎𝑎3𝑥𝑥

3 log 𝑎𝑎
+ 𝐶𝐶 =  𝑎𝑎

3𝑥𝑥+3

3 log 𝑎𝑎
+ 𝐶𝐶.  

2.3. Integration by Substitution. 

By substitution, many functions can be converted into smaller functions which can be integrated easily. 

When we apply method of substitution for finding the value of ∫𝑓𝑓(𝑥𝑥)  𝑑𝑑𝑥𝑥 and if 𝑥𝑥 =  𝑓𝑓(𝑡𝑡)  where 𝑡𝑡 is a 
new variable then 𝑓𝑓(𝑥𝑥) is converted into 𝐹𝐹[𝑓𝑓(𝑡𝑡)] and also 𝑑𝑑𝑦𝑦/𝑑𝑑𝑥𝑥. 

Now 𝑥𝑥 =  𝑓𝑓(𝑡𝑡) 

Therefore, 𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

=  𝑓𝑓′(𝑡𝑡) or 𝑑𝑑𝑥𝑥 =  𝑓𝑓′(𝑡𝑡) 𝑑𝑑𝑡𝑡 . 

Two important forms of integrals : 

(i)   ∫ 𝑓𝑓 ′(𝑥𝑥)
𝑓𝑓(𝑥𝑥)

𝑑𝑑𝑥𝑥 =  𝑙𝑙𝑙𝑙𝑙𝑙|𝑓𝑓(𝑥𝑥)|  +  𝐶𝐶 

(ii) ∫[𝑓𝑓(𝑥𝑥)]𝑛𝑛  . 𝑓𝑓′(𝑥𝑥)  𝑑𝑑𝑥𝑥 = [𝑓𝑓(𝑥𝑥)]𝑛𝑛+1

𝑛𝑛+1
  𝑤𝑤ℎ𝑠𝑠𝑛𝑛 𝑛𝑛 ≠ −1 . 

2.3.1. Example. Evaluate the following : 
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 (i)  ∫ 2𝑥𝑥+9
𝑥𝑥2+9𝑥𝑥+10

𝑑𝑑𝑥𝑥    (ii) ∫ 6𝑥𝑥−8
3𝑥𝑥2−8𝑥𝑥+5

𝑑𝑑𝑥𝑥 

  (iii) ∫3𝑥𝑥2. 𝑠𝑠𝑥𝑥3𝑑𝑑𝑥𝑥     (iv) ∫ 𝑠𝑠1/𝑥𝑥2

𝑥𝑥3 𝑑𝑑𝑥𝑥 

(v)  ∫ log 𝑥𝑥
𝑥𝑥
𝑑𝑑𝑥𝑥     (vi) ∫ 1

𝑥𝑥 log e 𝑥𝑥
𝑑𝑑𝑥𝑥 

(vii)  ∫ 𝑥𝑥3

√1+𝑥𝑥3 𝑑𝑑𝑥𝑥    (viii) ∫ 1
𝑥𝑥+√𝑥𝑥

𝑑𝑑𝑥𝑥 

Solution.  

(i)  I = ∫ 2𝑥𝑥+9
𝑥𝑥2+9𝑥𝑥+10

𝑑𝑑𝑥𝑥 

 Put 𝑥𝑥2 + 9𝑥𝑥 + 10 = 𝑡𝑡 

 Therefore, 2𝑥𝑥 + 9 =  𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

  or (2𝑥𝑥 + 9)𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

Therefore,  I = ∫ 𝑑𝑑𝑡𝑡
𝑡𝑡

= log|𝑡𝑡| + 𝐶𝐶 = log|𝑥𝑥2 + 9𝑥𝑥 + 10| + 𝐶𝐶 

(ii) I = ∫ 6𝑥𝑥−8
3𝑥𝑥2−8𝑥𝑥+5

𝑑𝑑𝑥𝑥 

 Put 3𝑥𝑥2 − 8𝑥𝑥 + 5 = 𝑡𝑡 

 Therefore, 6𝑥𝑥 − 8 =  𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

  or (6𝑥𝑥 − 8)𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

Therefore,  I = ∫ 𝑑𝑑𝑡𝑡
𝑡𝑡

= log|𝑡𝑡| + 𝐶𝐶 = log|3𝑥𝑥2 − 8𝑥𝑥 + 5| + 𝐶𝐶. 

(iii)  I = ∫3𝑥𝑥2. 𝑠𝑠𝑥𝑥3𝑑𝑑𝑥𝑥 

 Put 𝑥𝑥3 = 𝑡𝑡 

 Therefore, 3𝑥𝑥2 =  𝑑𝑑𝑥𝑥
𝑑𝑑𝑡𝑡

  or 3𝑥𝑥2𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

Therefore,  I = ∫3𝑥𝑥2. 𝑠𝑠𝑥𝑥3𝑑𝑑𝑥𝑥 = ∫ 𝑠𝑠𝑡𝑡 𝑑𝑑𝑡𝑡 =  𝑠𝑠𝑡𝑡 + 𝐶𝐶 = 𝑠𝑠𝑥𝑥3 + 𝐶𝐶. 

(iv)  Let 1
𝑥𝑥2 = 𝑡𝑡  or 𝑥𝑥−2 = 𝑡𝑡 

Therefore, − 2
𝑥𝑥3 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡  or   1

𝑥𝑥3 𝑑𝑑𝑥𝑥 = − 1
2
𝑑𝑑𝑡𝑡 

Thus,  ∫ 𝑠𝑠1/𝑥𝑥2

𝑥𝑥3 𝑑𝑑𝑥𝑥 =  ∫ 𝑠𝑠1/𝑥𝑥2 1
𝑥𝑥3 𝑑𝑑𝑥𝑥 =  ∫ 𝑠𝑠𝑡𝑡 �− 1

2
�𝑑𝑑𝑡𝑡 

    = − 1
2 ∫ 𝑠𝑠

𝑡𝑡 𝑑𝑑𝑡𝑡 =  − 1
2
𝑠𝑠𝑡𝑡 + 𝐶𝐶 =  − 1

2
𝑠𝑠1/𝑥𝑥2 + 𝐶𝐶. 

(v)  Let log 𝑥𝑥 = 𝑡𝑡.  So  1
𝑥𝑥
𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

 Therefore, 

 ∫ log 𝑥𝑥
𝑥𝑥
𝑑𝑑𝑥𝑥 =  ∫ log 𝑥𝑥 . 1

𝑥𝑥
 𝑑𝑑𝑥𝑥 =  ∫ 𝑡𝑡 𝑑𝑑𝑡𝑡 =  𝑡𝑡

2

2
+ 𝐶𝐶 =  (log 𝑥𝑥)2

2
+ 𝐶𝐶. 
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(vi)  Let loge 𝑥𝑥 = 𝑡𝑡,  so  1
𝑥𝑥
𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

 Therefore, 

 ∫ 1
𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑥𝑥

𝑑𝑑𝑥𝑥 =  ∫ 1
𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑥𝑥

. 1
𝑥𝑥
 𝑑𝑑𝑥𝑥 =  ∫ 1

𝑡𝑡
𝑑𝑑𝑡𝑡 =  𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑡𝑡 + 𝐶𝐶 =  𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠(𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠𝑥𝑥) + 𝐶𝐶. 

(vii)   Let  1 + 𝑥𝑥3 = 𝑡𝑡2   or   𝑥𝑥2𝑑𝑑𝑥𝑥 =  2
3
𝑡𝑡 𝑑𝑑𝑡𝑡 

 Therefore,   ∫ 𝑥𝑥3

�(1+𝑥𝑥3)
𝑑𝑑𝑥𝑥 = ∫ 𝑥𝑥3

�(1+𝑥𝑥3)
. 𝑥𝑥2𝑑𝑑𝑥𝑥 =  ∫ 𝑡𝑡2−1

𝑡𝑡
. 2

3
𝑡𝑡 𝑑𝑑𝑡𝑡  

    = �2
3
�∫(𝑡𝑡2 − 1)𝑑𝑑𝑡𝑡 = 2

3
 �1

3
𝑡𝑡3 − 𝑡𝑡� + 𝐶𝐶 

    =  2
9

(1 + 𝑥𝑥3)3/2 −  2
3

(1 + 𝑥𝑥3)1/2 + 𝐶𝐶 

(viii)  ∫ 1
𝑥𝑥+√𝑥𝑥

𝑑𝑑𝑥𝑥 =  ∫ 1
√𝑥𝑥(√𝑥𝑥+1)

𝑑𝑑𝑥𝑥 

   Let √𝑥𝑥 = 𝑡𝑡,   so  1
2√𝑥𝑥

𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡   or   1
√𝑥𝑥
𝑑𝑑𝑥𝑥 = 2𝑑𝑑𝑡𝑡 

  Therefore,   ∫ 1
𝑥𝑥+√𝑥𝑥

𝑑𝑑𝑥𝑥 = 2∫ 7
√𝑥𝑥(√𝑥𝑥+1)

=  ∫ 1
𝑡𝑡+1

𝑑𝑑𝑥𝑥 

      = 2 log(𝑡𝑡 + 1) +  𝐶𝐶 = 2 log�√𝑥𝑥 + 1� +  𝐶𝐶.  

2.3.2. Example. Integrate the following : 

 (i)  𝑥𝑥√𝑥𝑥 + 2    (ii) 2+3𝑥𝑥
3+2𝑥𝑥

  (iii) (𝑥𝑥+1)(𝑥𝑥+log 𝑥𝑥)2

𝑥𝑥
      (iv) 1

𝑠𝑠𝑥𝑥−1 

Solution.    

(i)    I = ∫𝑥𝑥√𝑥𝑥 + 2𝑑𝑑𝑥𝑥 

 Putting  𝑥𝑥 + 2 = 𝑡𝑡  implies   𝑥𝑥 = 𝑡𝑡 − 2 

      Therefore, 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

   I = ∫(𝑡𝑡 − 2)𝑡𝑡1/2 𝑑𝑑𝑡𝑡 =  ∫ 𝑡𝑡3/2 𝑑𝑑𝑡𝑡 − 2∫ 𝑡𝑡1/2 𝑑𝑑𝑡𝑡 

   = 𝑡𝑡5/2

5/2
− 2 𝑡𝑡3/2

3/2
+ 𝐶𝐶 =  2

5
𝑡𝑡5/2 −  4

3
𝑡𝑡3/2 + 𝐶𝐶  

   = 2
5

(𝑥𝑥 + 2)5/2 − 4
3

(𝑥𝑥 + 2)3/2 + 𝐶𝐶. 

(ii)  I = ∫ 2+3𝑥𝑥
3+2𝑥𝑥

 𝑑𝑑𝑥𝑥 

 Putting  3 − 2𝑥𝑥 = 𝑡𝑡  implies   𝑥𝑥 = 3−𝑡𝑡
2

 

      Therefore, 𝑑𝑑𝑡𝑡 = −2𝑑𝑑𝑥𝑥  implies 𝑑𝑑𝑥𝑥 =  −𝑑𝑑𝑡𝑡
2

 

   I = − 1
2 ∫

2+3�3−𝑡𝑡
2 �

𝑡𝑡
𝑑𝑑𝑡𝑡 =  − 1

2 ∫
2+9

2−
3
2𝑡𝑡

𝑡𝑡
𝑑𝑑𝑡𝑡
2

 



40 Business Mathematics–I 

   = −∫ 𝑑𝑑𝑡𝑡
𝑡𝑡
− 9

4 ∫
𝑑𝑑𝑡𝑡
𝑡𝑡

+  3
4 ∫𝑑𝑑𝑡𝑡 

   = − log|𝑡𝑡| −  9
4

log|𝑡𝑡| + 4
3
𝑡𝑡 + 𝐶𝐶 

    = − log|3 − 2𝑥𝑥| −  9
4

log|3 − 2𝑥𝑥| +  3
4

(3 − 2𝑥𝑥) + 𝐶𝐶 

   = 3
4

(3 − 2𝑥𝑥) − log|3 − 2𝑥𝑥| −  9
4

log|3 − 2𝑥𝑥| + 𝐶𝐶 

(iii)   I = ∫
(𝑥𝑥+1)(𝑥𝑥+log 𝑥𝑥)2

𝑥𝑥
𝑑𝑑𝑥𝑥 

 Put 𝑥𝑥 + log 𝑥𝑥 = 𝑡𝑡,    therefore �1 + 1
𝑥𝑥
� 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡  or   �𝑥𝑥+1

𝑥𝑥
� 𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

Thus  𝐼𝐼 = ∫(𝑥𝑥 + log 𝑥𝑥)2 �𝑥𝑥+1
𝑥𝑥
� 𝑑𝑑𝑥𝑥 =  ∫ 𝑡𝑡2𝑑𝑑𝑡𝑡 =  𝑡𝑡

3

3
+ 𝐶𝐶 =  1

3 ∫(𝑥𝑥 + log 𝑥𝑥)3 + 𝐶𝐶. 

(iv)  ∫ 1
𝑠𝑠𝑥𝑥−1

𝑑𝑑𝑥𝑥 =  ∫ 𝑑𝑑𝑡𝑡
𝑡𝑡(𝑡𝑡−1)

=  ∫ � 1
𝑡𝑡−1

− 1
𝑡𝑡
� 𝑑𝑑𝑡𝑡 

  = log(𝑡𝑡 − 1) −  𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 + 𝐶𝐶 

  = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑡𝑡−1
𝑡𝑡
� = 𝑙𝑙𝑙𝑙𝑙𝑙 �𝑠𝑠

𝑥𝑥−1
𝑠𝑠𝑥𝑥

� + 𝐶𝐶  

2.4. Integral of the product of two functions. 

If 𝑢𝑢 and 𝑣𝑣 be two functions of 𝑥𝑥, then 

 𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑢𝑢𝑣𝑣) =  𝑢𝑢 𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

+ 𝑣𝑣 𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥

 

implies  𝑢𝑢 𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

= 𝑑𝑑
𝑑𝑑𝑥𝑥

(𝑢𝑢𝑣𝑣) − 𝑣𝑣 𝑑𝑑𝑢𝑢
𝑑𝑑𝑥𝑥

 

Integrating both sides w.r.t 𝑥𝑥, we get 

 ∫𝑢𝑢 𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥 = 𝑢𝑢𝑣𝑣 − ∫𝑣𝑣 𝑑𝑑𝑢𝑢

𝑑𝑑𝑥𝑥
𝑑𝑑𝑥𝑥    …. (1) 

Let 𝑢𝑢 = 𝑓𝑓1(𝑥𝑥)  and 𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

= 𝑓𝑓2(𝑥𝑥) 

Since   𝑑𝑑𝑣𝑣
𝑑𝑑𝑥𝑥

= 𝑓𝑓2(𝑥𝑥),   therefore  ∫𝑓𝑓2(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑣𝑣 

Hence (1) becomes 

 ∫𝑓𝑓1(𝑥𝑥)𝑓𝑓2(𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑓𝑓1(𝑥𝑥)∫𝑓𝑓2(𝑥𝑥)𝑑𝑑𝑥𝑥 −  ∫[𝑓𝑓1
′(𝑥𝑥)∫𝑓𝑓2(𝑥𝑥)𝑑𝑑𝑥𝑥]𝑑𝑑𝑥𝑥. 

In words, this rule of integration by parts can be stated as : 

Integral of the product of two functions  

= First function . Integral of the second  

-Integral of [diff. coeff. of the first  . Integral of the second) 

Integral of the product of two functions 
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In finding integrals by this method proper choice of 1st  and 2nd  function is essential. Although there is 
no fixed law for taking 1st  and 2nd  function and their choice is possible by practice, yet following rule is 
helpful in the choice of functions 1st  and 2nd . 

(i) If the two functions are of different types take that function as Ist which comes first in the word 
ILATE. 

 Where  I, stands for Inverse circular function. 

L, stands for Logarithmic function. 

A, stands for Algebraic function. 

T, stands for Trigonometrical function. 

and  E, stands for Exponential function. 

(ii) If both the functions are trigonometrical take that function as 2nd whose integral is simpler. 

(iii) If both the functions are algebraic take that function as 1st whose d.c. is simpler. 

(iv) Unity may be taken as one of the functions. 

(v)  The formula of integration by parts can be applied more than once if necessary. 

2.4.1. Example. Evaluate ∫𝑥𝑥𝑛𝑛 log 𝑥𝑥 𝑑𝑑𝑥𝑥 

Solution.  Let  I = ∫𝑥𝑥𝑛𝑛 log 𝑥𝑥 𝑑𝑑𝑥𝑥 =  ∫(log 𝑥𝑥)𝑥𝑥𝑛𝑛 𝑑𝑑𝑥𝑥 

 So   I = (log 𝑥𝑥) 𝑥𝑥
𝑛𝑛+1

𝑛𝑛+1
−  ∫ 1

𝑥𝑥
𝑥𝑥𝑛𝑛+1

𝑛𝑛+1
𝑑𝑑𝑥𝑥 

     = 𝑥𝑥𝑛𝑛+1(log 𝑥𝑥)
𝑛𝑛+1

− 1
𝑛𝑛+1 ∫ 𝑥𝑥

𝑛𝑛 𝑑𝑑𝑥𝑥 

    = 𝑥𝑥𝑛𝑛+1(log 𝑥𝑥)
𝑛𝑛+1

− 1
𝑛𝑛+1

𝑥𝑥𝑛𝑛+1

𝑛𝑛+1
+ 𝐶𝐶 =  𝑥𝑥

𝑛𝑛+1 log 𝑥𝑥
𝑛𝑛+1

− 𝑥𝑥𝑛𝑛+1

(𝑛𝑛+1)2 + 𝐶𝐶. 

2.4.2. Example. Evaluate ∫𝑥𝑥𝑠𝑠𝑥𝑥 𝑑𝑑𝑥𝑥 

Solution.  Let  I= ∫𝑥𝑥𝑠𝑠𝑥𝑥 𝑑𝑑𝑥𝑥 

[Here 𝑥𝑥 is algebraic function and 𝑠𝑠𝑥𝑥  is exponential function and A occurs before T in ILATE, therefore, 
we take 𝑥𝑥 as 1st and 𝑠𝑠𝑥𝑥  as 2nd functions]. 

 𝐼𝐼 = ∫ 𝑥𝑥𝑠𝑠𝑥𝑥 𝑑𝑑𝑥𝑥 = 𝑥𝑥 ∫ 𝑠𝑠𝑥𝑥 𝑑𝑑𝑥𝑥 − ∫� 𝑑𝑑𝑑𝑑𝑥𝑥 (𝑥𝑥)∫ 𝑠𝑠𝑥𝑥 𝑑𝑑𝑥𝑥�𝑑𝑑𝑥𝑥 

    = 𝑥𝑥𝑠𝑠𝑥𝑥 − ∫1. 𝑠𝑠𝑥𝑥 𝑑𝑑𝑥𝑥 =  𝑥𝑥𝑠𝑠𝑥𝑥 − 𝑠𝑠𝑥𝑥 +  𝐶𝐶 =  𝑠𝑠𝑥𝑥(𝑥𝑥 − 1) + 𝐶𝐶.  

2.4.3. Example. Evaluate ∫𝑥𝑥3𝑠𝑠−𝑥𝑥 𝑑𝑑𝑥𝑥 

Solution.  Let  I= ∫𝑥𝑥3𝑠𝑠−𝑥𝑥 𝑑𝑑𝑥𝑥 =  𝑥𝑥3(−𝑠𝑠−𝑥𝑥) −  ∫3𝑥𝑥2(−𝑠𝑠−𝑥𝑥)𝑑𝑑𝑥𝑥 

    = −𝑥𝑥3𝑠𝑠−𝑥𝑥 +  3∫𝑥𝑥2𝑠𝑠−𝑥𝑥𝑑𝑑𝑥𝑥 

    = −𝑥𝑥3𝑠𝑠−𝑥𝑥 + 3[𝑥𝑥2(−𝑠𝑠−𝑥𝑥) −  ∫2𝑥𝑥(−𝑠𝑠−𝑥𝑥)𝑑𝑑𝑥𝑥] 
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    = −𝑥𝑥3𝑠𝑠−𝑥𝑥 − 3𝑥𝑥2𝑠𝑠−𝑥𝑥 + 6∫ 𝑥𝑥𝑠𝑠−𝑥𝑥𝑑𝑑𝑥𝑥 

  = −𝑥𝑥3𝑠𝑠−𝑥𝑥 − 3𝑥𝑥2𝑠𝑠−𝑥𝑥 + 6[𝑥𝑥(−𝑠𝑠−𝑥𝑥) −  ∫ 1(−𝑠𝑠−𝑥𝑥)𝑑𝑑𝑥𝑥 

  = −𝑥𝑥3𝑠𝑠−𝑥𝑥 − 3𝑥𝑥2𝑠𝑠−𝑥𝑥 − 6𝑠𝑠−𝑥𝑥 + 6𝑥𝑥𝑠𝑠−𝑥𝑥 + 𝐶𝐶 

  = −𝑠𝑠−𝑥𝑥(𝑥𝑥3 + 3𝑥𝑥2 − 6𝑥𝑥 + 6) + 𝐶𝐶 

2.4.4. Example. Integrate  𝑥𝑥3𝑠𝑠𝑥𝑥2  

Solution.   I = ∫ 𝑥𝑥3𝑠𝑠𝑥𝑥2 𝑑𝑑𝑥𝑥 

Put 𝑥𝑥2 = 𝑡𝑡,   therefore,    2𝑥𝑥𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡  or  𝑥𝑥𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡
2

 

I =  ∫𝑥𝑥3𝑠𝑠𝑥𝑥2 𝑑𝑑𝑥𝑥 =  ∫ 𝑥𝑥2𝑠𝑠𝑥𝑥2𝑥𝑥 𝑑𝑑𝑥𝑥 =  ∫ 𝑡𝑡𝑠𝑠𝑡𝑡 𝑑𝑑𝑡𝑡2 =  1
2 ∫ 𝑡𝑡𝑠𝑠

𝑡𝑡 𝑑𝑑𝑡𝑡 

  =  1
2

[𝑡𝑡𝑠𝑠𝑡𝑡 −  ∫ 1. 𝑠𝑠𝑡𝑡 𝑑𝑑𝑡𝑡]  

    = 1
2
𝑡𝑡𝑠𝑠𝑡𝑡 − 1

2
𝑠𝑠𝑡𝑡 + 𝐶𝐶 =  1

2
𝑥𝑥2𝑠𝑠𝑥𝑥2 − 1

2
𝑠𝑠𝑥𝑥2 + 𝐶𝐶. 

2.4.5. Example. Evaluate ∫𝑥𝑥2𝑠𝑠𝑎𝑎𝑥𝑥 𝑑𝑑𝑥𝑥 

Solution. Let 𝐼𝐼 = ∫ 𝑥𝑥2𝑠𝑠𝑎𝑎𝑥𝑥 𝑑𝑑𝑥𝑥 

 = 𝑥𝑥2 �𝑠𝑠
𝑎𝑎𝑥𝑥

𝑎𝑎
� − ∫ 2𝑥𝑥 𝑠𝑠𝑎𝑎𝑥𝑥

𝑎𝑎
𝑑𝑑𝑥𝑥  

    = 𝑥𝑥2𝑠𝑠𝑎𝑎𝑥𝑥

𝑎𝑎
− 2

𝑎𝑎
�𝑥𝑥 �𝑠𝑠

𝑎𝑎𝑥𝑥

𝑎𝑎
� − ∫1. 𝑠𝑠

𝑎𝑎𝑥𝑥

𝑎𝑎
𝑑𝑑𝑥𝑥� 

    = 𝑥𝑥2𝑠𝑠𝑎𝑎𝑥𝑥

𝑎𝑎
− 2

𝑎𝑎
�𝑥𝑥 𝑠𝑠𝑎𝑎𝑥𝑥

𝑎𝑎
− 1

𝑎𝑎
𝑠𝑠𝑎𝑎𝑥𝑥 � + 𝐶𝐶 

 = 𝑠𝑠𝑎𝑎𝑥𝑥 �𝑥𝑥
2

𝑎𝑎
− 2𝑥𝑥

𝑎𝑎2 + 2
𝑎𝑎2� + 𝐶𝐶. 

2.4.6. Example. Evaluate∫ log 𝑥𝑥 𝑑𝑑𝑥𝑥 

Solution. Let I= ∫ log 𝑥𝑥 𝑑𝑑𝑥𝑥 =  ∫(log 𝑥𝑥).1𝑑𝑑𝑥𝑥 

Integrating by parts, taking 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 as the 1st function 

 = log 𝑥𝑥 (𝑥𝑥) −  ∫ 1
𝑥𝑥

. 𝑥𝑥 𝑑𝑑𝑥𝑥 = 𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 − ∫1 𝑑𝑑𝑥𝑥 

            = 𝑥𝑥 log 𝑥𝑥 − 𝑥𝑥 + 𝐶𝐶 = 𝑥𝑥(log 𝑥𝑥 − 1) + 𝐶𝐶. 

2.4.7. Example. Evaluate ∫(log 𝑥𝑥)2. 𝑥𝑥 𝑑𝑑𝑥𝑥 

Solution. Let  𝐼𝐼 = ∫(log 𝑥𝑥)2. 𝑥𝑥 𝑑𝑑𝑥𝑥 

  (log 𝑥𝑥)2. 𝑥𝑥
2

2
− ∫(2 log 𝑥𝑥). 1

𝑥𝑥
. 𝑥𝑥

2

2
𝑑𝑑𝑥𝑥 

 = 𝑥𝑥2

2
(log 𝑥𝑥)2 − ∫(log 𝑥𝑥). 𝑥𝑥 𝑑𝑑𝑥𝑥 
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 = 𝑥𝑥2

2
(log 𝑥𝑥)2 − �log 𝑥𝑥 𝑥𝑥2

2
− ∫ 1

𝑥𝑥
. 𝑥𝑥

2

2
𝑑𝑑𝑥𝑥� 

    = 𝑥𝑥2

2
(log 𝑥𝑥)2 − 𝑥𝑥2

2
log 𝑥𝑥 + 1

2 ∫𝑥𝑥 𝑑𝑑𝑥𝑥 

 = 𝑥𝑥2

2
�(log𝑥𝑥)2 − log 𝑥𝑥 +  1

2
� + 𝐶𝐶 

2.4.8. Example. Evaluate ∫ 𝑠𝑠𝑥𝑥(1 + 𝑥𝑥) log(𝑥𝑥𝑠𝑠𝑥𝑥)𝑑𝑑𝑥𝑥 

Solution.  Let I= ∫ 𝑠𝑠𝑥𝑥(1 + 𝑥𝑥) log(𝑥𝑥𝑠𝑠𝑥𝑥)𝑑𝑑𝑥𝑥 

Put  𝑥𝑥𝑠𝑠𝑥𝑥 = 𝑡𝑡,   therefore,   𝑠𝑠𝑥𝑥(1 + 𝑥𝑥)𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

Therefore,  𝐼𝐼 = ∫(log 𝑡𝑡). 1 𝑑𝑑𝑡𝑡 

           = log 𝑡𝑡. (𝑡𝑡) −  ∫ 1
𝑡𝑡

. 𝑡𝑡 𝑑𝑑𝑡𝑡 

          = 𝑡𝑡 log 𝑡𝑡 −  ∫ 1.𝑑𝑑𝑡𝑡 = 𝑡𝑡 log 𝑡𝑡 − 𝑡𝑡 + 𝐶𝐶 

           = 𝑡𝑡(log 𝑡𝑡 − 1) +  𝐶𝐶 = ( 𝑥𝑥𝑠𝑠𝑥𝑥)[log(𝑥𝑥𝑠𝑠𝑥𝑥) − log 𝑠𝑠] + 𝐶𝐶 

         = (𝑥𝑥𝑠𝑠𝑥𝑥) log �𝑥𝑥𝑠𝑠
𝑥𝑥

𝑠𝑠
� + 𝐶𝐶 

2.4.9. Example. Evaluate ∫ log 𝑥𝑥
(𝑥𝑥+1)2 𝑑𝑑𝑥𝑥 

Solution. Let  I= ∫ log 𝑥𝑥 . 1
(𝑥𝑥+1)2 𝑑𝑑𝑥𝑥 

Now integrating by parts, taking 𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 as first function 

 I = log 𝑥𝑥 . −1
1+𝑥𝑥

− ∫ 1
𝑥𝑥

. −1
1+𝑥𝑥

𝑑𝑑𝑥𝑥 = − log 𝑥𝑥
1+𝑥𝑥

𝑑𝑑𝑥𝑥 =  − log 𝑥𝑥
1+𝑥𝑥

+ ∫ 1
𝑥𝑥(1+𝑥𝑥)

𝑑𝑑𝑥𝑥 

    = − log 𝑥𝑥
1+𝑥𝑥

+ ∫ �1
𝑥𝑥

+ 1
1+𝑥𝑥

� 𝑑𝑑𝑥𝑥 

  = − log 𝑥𝑥
1+𝑥𝑥

+ log|𝑥𝑥| − log |1 + 𝑥𝑥| + 𝐶𝐶 

    = − log 𝑥𝑥
1+𝑥𝑥

+ log � 𝑥𝑥
1+𝑥𝑥

� + 𝐶𝐶. 

2.5. Integration by partial fractions. 

2.5.1. Rational Function. An expression of the form 𝑓𝑓(𝑥𝑥)
𝜑𝜑(𝑥𝑥)

 where 𝑓𝑓(𝑥𝑥) and 𝜑𝜑(𝑥𝑥) are rational integral 

algebraic functions or polynomials. 

  𝑓𝑓(𝑥𝑥) = 𝑎𝑎0𝑥𝑥𝑚𝑚 + 𝑎𝑎1𝑥𝑥𝑚𝑚−1 + ⋯+ 𝑎𝑎𝑚𝑚−1𝑥𝑥 + 𝑎𝑎𝑚𝑚  

 𝜑𝜑(𝑥𝑥) =  𝑏𝑏0𝑥𝑥𝑛𝑛 + 𝑏𝑏1𝑥𝑥𝑛𝑛−1 + ⋯+ 𝑏𝑏𝑛𝑛−1𝑥𝑥 + 𝑏𝑏𝑛𝑛 .  

Where 𝑚𝑚,𝑛𝑛 are positive integers and 𝑎𝑎0,𝑎𝑎1,𝑎𝑎2, … ,𝑎𝑎𝑚𝑚 , 𝑏𝑏0, 𝑏𝑏1, 𝑏𝑏2, … , 𝑏𝑏𝑛𝑛  are constants is called a rational 
function or rational fraction. It is assumed that 𝑓𝑓(𝑥𝑥) and 𝜑𝜑(𝑥𝑥) have no common factor. 

e.g.  𝑥𝑥+1
𝑥𝑥3+𝑥𝑥2−6𝑥𝑥

, 𝑥𝑥−1
(𝑥𝑥+1)(𝑥𝑥2+1)

  are rational functions. 
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Such fractions can always be integrated by splitting the given fraction into partial fractions. 

Note on Partial Fractions 

1. Proper rational algebraic fraction. A proper rational algebraic fraction is a rational algebraic  
fraction in which the degree of the numerator is less than that of the denominator. 

2. The degree of the numerator 𝑓𝑓(𝑥𝑥) must be less than the degree of denominator 𝜑𝜑(𝑥𝑥) and if the degree 
of the numerator of a rational algebraic fraction is equal to or greater than, that of the  denominator, 
we can divide the numerator by the denominator until the degree of the remainder is less than that of 
the denominator. 

Then 

Given fraction = a polynomial + a proper rational algebraic fraction. 

For example, consider a rational algebraic fraction. 

 𝑥𝑥2

(𝑥𝑥−1)(𝑥𝑥−2)
= 𝑥𝑥2

𝑥𝑥2−3𝑥𝑥+2
 

Hence the degree of the numerator is 3 and the degree of the denominator is 2. We divide numerator by 
denominator. 

Therefore,  𝑥𝑥2

(𝑥𝑥−1)(𝑥𝑥−2)
= 𝑥𝑥 + 3 + 7𝑥𝑥−6

(𝑥𝑥−1)(𝑥𝑥−2)
 

Working rule. 

 (i) The degree of the numerator (𝑥𝑥) must be less than the degree of denominator 𝜑𝜑(𝑥𝑥) and if not so, 
then divide 𝑓𝑓(𝑥𝑥) by 𝜑𝜑(𝑥𝑥) till the remainder of a lower degree than 𝜑𝜑(𝑥𝑥). 

(ii)  Now break the denominator 𝜑𝜑(𝑥𝑥) into linear and quadratic factors. 

(iii) (a) Corresponding to non-repeated linear factor of (𝑥𝑥 − 𝑎𝑎) type in the denominator 𝜑𝜑(𝑥𝑥).. Put a 
partial fraction of the form 𝐴𝐴

𝑥𝑥−𝛼𝛼
. 

 Therefore,  the partial fraction of 𝑥𝑥2

(𝑥𝑥+2)(𝑥𝑥−4)(𝑥𝑥−5)
 are of the form 𝐴𝐴

𝑥𝑥+2
+ 𝐵𝐵

𝑥𝑥−4
+ 𝐶𝐶

𝑥𝑥−5
 

(b) Corresponding to non-repeated quadratic factor (𝑎𝑎𝑥𝑥2  +  𝑏𝑏𝑥𝑥 +  𝑠𝑠) of 𝜑𝜑(𝑥𝑥), partial fraction will 
be of the form 𝐴𝐴𝑥𝑥+𝑏𝑏

𝑎𝑎𝑥𝑥2 + 𝑏𝑏𝑥𝑥  + 𝑠𝑠
 

For example, the partial fraction of 

  2𝑥𝑥−3
(𝑥𝑥−1)(𝑥𝑥−4)2(𝑥𝑥2−5𝑥𝑥+10)

= 𝐴𝐴
(𝑥𝑥−1)

+ 𝐵𝐵
𝑥𝑥−4

+ 𝐶𝐶
(𝑥𝑥−4)2 + 𝐷𝐷

𝑥𝑥2−5𝑥𝑥+10
 

(c)  Corresponding to a repeated quadratic factor of the form (𝑎𝑎𝑥𝑥2 + 𝑏𝑏 + 𝑠𝑠)𝑚𝑚  in 𝜑𝜑(𝑥𝑥), there 

corresponds m partial fractions of the form 

 𝐴𝐴1𝑥𝑥+𝐵𝐵1
(𝑎𝑎𝑥𝑥2+𝑏𝑏𝑥𝑥+𝑠𝑠)

+ 𝐴𝐴2𝑥𝑥+𝐵𝐵2
(𝑎𝑎𝑥𝑥2+𝑏𝑏𝑥𝑥+𝑠𝑠)2 + ⋯+ 𝐴𝐴𝑚𝑚 𝑥𝑥+𝐵𝐵𝑚𝑚

(𝑎𝑎𝑥𝑥2+𝑏𝑏𝑥𝑥+𝑠𝑠)𝑚𝑚
 

Therefore the partial fractions of 
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 3𝑥𝑥−5
(𝑥𝑥+5)(𝑥𝑥2+7𝑥𝑥+8)2 = 𝐴𝐴

𝑥𝑥+5
+ 𝐵𝐵𝑥𝑥+𝐶𝐶

𝑥𝑥2+7𝑥𝑥+8
+ 𝐷𝐷𝑥𝑥+𝐸𝐸

(𝑥𝑥2+7𝑥𝑥+8)2 

Thus we see that when we resolve the denominator 𝜑𝜑(𝑥𝑥) into real factors, they can be of four 

types : 

(a) Linear non-repeated. 

(b) Linear repeated. 

(c) Quadratic non-repeated. 

(d) Quadratic repeated. 

The proper fraction 𝑓𝑓(𝑥𝑥)
𝜑𝜑(𝑥𝑥)

 is equal to the sum of partial fractions as suggested above. After this, multiply 

both sides by 𝜑𝜑(𝑥𝑥). The relation, we get will be an identity. So the values of the constants of R.H.S. will 
be obtained by equating the coefficients of like powers of 𝑥𝑥, and then 

solving the equation so obtained. Sometimes we can get the values of constants by some short 

cut methods i.e., by giving certain values to 𝑥𝑥 etc. 

2.5.2. Example. Evaluate the following 

 (i) ∫ 3𝑥𝑥+2
(𝑥𝑥−2)(2𝑥𝑥+3)

𝑑𝑑𝑥𝑥     (ii) ∫ 3𝑥𝑥−1
(2𝑥𝑥+1)(3𝑥𝑥+2)(6𝑥𝑥−1)

𝑑𝑑𝑥𝑥   

Solution. (i) Let 3𝑥𝑥+2
(𝑥𝑥−2)(2𝑥𝑥+3)

=  𝐴𝐴
𝑥𝑥−2

+ 𝐵𝐵
2𝑥𝑥+3

 

Multiplying both sides by (𝑥𝑥 − 2) (2𝑥𝑥 + 3) 

    3𝑥𝑥 + 2 =  𝐴𝐴(2𝑥𝑥 + 3)  +  𝐵𝐵(𝑥𝑥 − 2) 

Put 𝑥𝑥 = − 3
2
,   we have  𝐵𝐵 = 5

7
 

 Put 𝑥𝑥 = 2,   we have  𝐵𝐵 = 8
7
 

Therefore,  3𝑥𝑥+2
(𝑥𝑥−2)(2𝑥𝑥+3)

=  8
7(𝑥𝑥−2)

+ 5
7(2𝑥𝑥+3)

 

Thus,   ∫ 3𝑥𝑥+2
(𝑥𝑥−2)(2𝑥𝑥+3)

𝑑𝑑𝑥𝑥 =  ∫ 8
7(𝑥𝑥−2)

𝑑𝑑𝑥𝑥 + ∫ 5
7(2𝑥𝑥+3)

𝑑𝑑𝑥𝑥 

                                      = 8
7

log|𝑥𝑥 − 2| + 5
7

log |2𝑥𝑥 + 3| + 𝐶𝐶 

(ii)  Let  3𝑥𝑥−1
(2𝑥𝑥+1)(3𝑥𝑥+2)(6𝑥𝑥−1) = 𝐴𝐴

2𝑥𝑥+1
+ 𝐵𝐵

3𝑥𝑥+2
+ 𝐶𝐶

6𝑥𝑥−5
 

Multiplying both sides 𝑏𝑏𝑦𝑦 (2𝑥𝑥 + 1) (3𝑥𝑥 + 2) (6𝑥𝑥 − 5) 

  (3𝑥𝑥 − 1)  =  𝐴𝐴(3𝑥𝑥 + 2)(6𝑥𝑥 − 5) + 𝐵𝐵(2𝑥𝑥 + 1)(6𝑥𝑥 − 5)  +  𝐶𝐶(2𝑥𝑥 + 1)(3𝑥𝑥 + 2) 

Put 𝑥𝑥 = − 1
2
,    we have  𝐴𝐴 = 5

8
 

 Put 𝑥𝑥 = − 2
3
,   we have  𝐵𝐵 = −5 
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 Put 𝑥𝑥 = 5
6
,   we have  𝐶𝐶 = 1

8
 

Therefore,  3𝑥𝑥−1
(2𝑥𝑥+1)(3𝑥𝑥+2)(6𝑥𝑥−1) = 5

8(2𝑥𝑥+1)
− 1

3𝑥𝑥+2
+ 1

8(6𝑥𝑥−5)
 

Thus,   ∫ 3𝑥𝑥−1
(2𝑥𝑥+1)(3𝑥𝑥+2)(6𝑥𝑥−1)𝑑𝑑𝑥𝑥 = ∫ 5

8(2𝑥𝑥+1)
𝑑𝑑𝑥𝑥 − ∫ 1

3𝑥𝑥+2
𝑑𝑑𝑥𝑥 + ∫ 1

8(6𝑥𝑥−5)
𝑑𝑑𝑥𝑥 

                                      = 5
16

log|2𝑥𝑥 + 1| − 1
3

log |3𝑥𝑥 + 2| + 1
48

log |6𝑥𝑥 − 5| + 𝐶𝐶 

2.5.3. Example. Evaluate 

 (i)  ∫ 17𝑥𝑥−2
4𝑥𝑥2+7𝑥𝑥−2

𝑑𝑑𝑥𝑥   (ii) ∫ 𝑑𝑑𝑥𝑥
𝑥𝑥−𝑥𝑥3 

Solution. (i)  17𝑥𝑥−2
4𝑥𝑥2+7𝑥𝑥−2

=  17𝑥𝑥−2
(𝑥𝑥+2)(4𝑥𝑥−1) = 𝐴𝐴

𝑥𝑥+2
+ 𝐵𝐵

4𝑥𝑥−1
 

 17𝑥𝑥 − 2 =  𝐴𝐴(4𝑥𝑥 − 1) +  𝐵𝐵(𝑥𝑥 + 2) 

Put 𝑥𝑥 = 1
4
,    we have  𝐵𝐵 = 1 

 Put 𝑥𝑥 = −2,   we have  𝐴𝐴 = 4 

Therefore,  17𝑥𝑥−2
4𝑥𝑥2+7𝑥𝑥−2

=  4
𝑥𝑥+2

+ 1
4𝑥𝑥−1

 

Thus,   ∫ 17𝑥𝑥−2
4𝑥𝑥2+7𝑥𝑥−2

𝑑𝑑𝑥𝑥 = ∫ 4
𝑥𝑥+2

𝑑𝑑𝑥𝑥 + ∫ 1
4𝑥𝑥−1

𝑑𝑑𝑥𝑥 

                                    = 4 log|𝑥𝑥 + 2| + 1
4

log |4𝑥𝑥 − 1| + 𝐶𝐶. 

(ii)  ∫ 𝑑𝑑𝑥𝑥
𝑥𝑥−𝑥𝑥3 = ∫ 𝑑𝑑𝑥𝑥

𝑥𝑥(1−𝑥𝑥2)
=  ∫ 𝑑𝑑𝑥𝑥

𝑥𝑥(1−𝑥𝑥)(𝑥𝑥+𝑥𝑥)
  

 Let  1
𝑥𝑥(1−𝑥𝑥)(1+𝑥𝑥) = 𝐴𝐴

𝑥𝑥
+ 𝐵𝐵

1−𝑥𝑥
+ 𝐶𝐶

1+𝑥𝑥
 

Multiplying both sides by 𝑥𝑥(1 − 𝑥𝑥)(1 + 𝑥𝑥), we get 

   1 =  𝐴𝐴(1 − 𝑥𝑥)(1 + 𝑥𝑥) + 𝐵𝐵𝑥𝑥(1 + 𝑥𝑥) + 𝐶𝐶𝑥𝑥(1 − 𝑥𝑥) 

Putting 𝑥𝑥 =  0 , 1 and −1, we get 𝐴𝐴 = 1, 𝐵𝐵 = 1
2

,   𝐶𝐶 = − 1
2
 

Putting these values of 𝐴𝐴,𝐵𝐵 and 𝐶𝐶, we get 

 1
𝑥𝑥(1−𝑥𝑥)(1+𝑥𝑥) = 1

𝑥𝑥
+ 1

2(1−𝑥𝑥)
− 1

2(1+𝑥𝑥)
 

Then,    

 ∫ 𝑑𝑑𝑥𝑥
𝑥𝑥−𝑥𝑥2 = ∫ �1

𝑥𝑥
+ 1

2(1−𝑥𝑥)
− 1

2(1+𝑥𝑥)
� 𝑑𝑑𝑥𝑥 

    = log|𝑥𝑥| − 1
2

log |1 − 𝑥𝑥| −  1
2

log |1 + 𝑥𝑥| +  𝐶𝐶  

   = 1
2

[2 log|𝑥𝑥| − log|1 − 𝑥𝑥| − log|1 + 𝑥𝑥|] + 𝐶𝐶 
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  = 1
2

log � 𝑥𝑥2

1−𝑥𝑥2�+ 𝐶𝐶 

2.5.4. Example. Evaluate  (i)  ∫ 𝑑𝑑𝑥𝑥
1+3𝑠𝑠𝑥𝑥+2𝑠𝑠2𝑥𝑥    (ii) ∫ 𝑑𝑑𝑥𝑥

6(log 𝑥𝑥)2+7 log 𝑥𝑥+2
 

Solution. (i)  Put 𝑠𝑠𝑥𝑥 = 𝑡𝑡,   therefore 𝑠𝑠𝑥𝑥𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

    𝐼𝐼 = ∫ 𝑑𝑑𝑡𝑡
𝑠𝑠𝑥𝑥 (1+3𝑡𝑡+2𝑡𝑡2)

=  ∫ 𝑑𝑑𝑡𝑡
𝑡𝑡(2𝑡𝑡+1)(𝑡𝑡+1)

 

Now   1
𝑡𝑡(2𝑡𝑡+1)(𝑡𝑡+1)

=  1
𝑡𝑡

+ 1
1+𝑡𝑡

− 4
2𝑡𝑡+1

 

   𝐼𝐼 =  ∫ 1
𝑡𝑡
𝑑𝑑𝑡𝑡 + ∫ 1

1+𝑡𝑡
𝑑𝑑𝑡𝑡 − ∫ 4

2𝑡𝑡+1
𝑑𝑑𝑡𝑡 

      = log |𝑡𝑡| + log|1 + 𝑡𝑡| − 2 log |2𝑡𝑡 + 1| +  𝐶𝐶 

     = log|𝑠𝑠𝑥𝑥 | + log |𝑠𝑠𝑥𝑥 + 1| − 2 log |2𝑠𝑠𝑥𝑥 + 1| + 𝐶𝐶 

    = 𝑥𝑥 + + log |𝑠𝑠𝑥𝑥 + 1| − 2 log |2𝑠𝑠𝑥𝑥 + 1| + 𝐶𝐶 

(ii)   ∫ 𝑑𝑑𝑥𝑥
6(log 𝑥𝑥)2+7 log 𝑥𝑥+2

 

Put log 𝑥𝑥 = 𝑡𝑡,   then 1
𝑥𝑥
𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

 𝐼𝐼 = ∫ 𝑑𝑑𝑡𝑡
6𝑡𝑡2+7𝑡𝑡+2

=  ∫ 𝑑𝑑𝑡𝑡
(2𝑡𝑡+1)(3𝑡𝑡+2)

= 2∫ 𝑑𝑑𝑡𝑡
2𝑡𝑡+1

− 3 ∫ 𝑑𝑑𝑡𝑡
3𝑡𝑡+2

 

  = log |2𝑡𝑡 + 1| − 3
2

log |3𝑡𝑡 + 2| + 𝐶𝐶 

 = log �2𝑡𝑡+1
3𝑡𝑡+2

� + 𝐶𝐶 = log �2 log 𝑥𝑥+1
3 log 𝑥𝑥+2

� + 𝐶𝐶 

2.6. Definite Integral and Area. 

Sometimes, in geometry and other branches of integral calculus, it becomes necessary to find the 
differences in two values (say 𝑎𝑎 and 𝑏𝑏) of a variable 𝑥𝑥 for integral values of function 𝑓𝑓(𝑥𝑥). This 
difference is called definite integral of 𝑓𝑓(𝑥𝑥) within limits 𝑎𝑎 and 𝑏𝑏 or 𝑏𝑏 and 𝑎𝑎. 

This definite integral is shown as follows : 

   ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 

and is read as integration of 𝑓𝑓(𝑥𝑥) between limits 𝑎𝑎 and 𝑏𝑏. As we know that if ∫𝑓𝑓(𝑥𝑥)𝑑𝑑𝑥𝑥 =  𝐹𝐹(𝑥𝑥) 

So  ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 = [𝐹𝐹(𝑥𝑥)]𝑎𝑎𝑏𝑏 = 𝐹𝐹(𝑏𝑏) − 𝐹𝐹(𝑎𝑎), 

where 𝑎𝑎 and 𝑏𝑏 are called lower and upper limits. 

General Properties of Definite Integral 

Property 1. ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 =  ∫ 𝑓𝑓(𝑡𝑡)𝑏𝑏

𝑎𝑎 𝑑𝑑𝑡𝑡 

Property 2.  ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 =  −∫ 𝑓𝑓(𝑥𝑥)𝑎𝑎

𝑏𝑏 𝑑𝑑𝑥𝑥 
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Property 3.  ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 =  ∫ 𝑓𝑓(𝑥𝑥)𝑠𝑠

𝑎𝑎 𝑑𝑑𝑥𝑥 + ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏
𝑠𝑠 𝑑𝑑𝑥𝑥 where 𝑎𝑎 < 𝑠𝑠 < 𝑏𝑏 

Property 4.  ∫ 𝑓𝑓(𝑥𝑥)𝑎𝑎
0 𝑑𝑑𝑥𝑥 =  ∫ 𝑓𝑓(𝑎𝑎 − 𝑥𝑥)𝑏𝑏

0 𝑑𝑑𝑥𝑥 

Property 5.  ∫ 𝑓𝑓(𝑥𝑥)𝑎𝑎
−𝑎𝑎 𝑑𝑑𝑥𝑥 = 0  if 𝑓𝑓(𝑥𝑥) is an odd function of 𝑥𝑥 

    = 2 ∫ 𝑓𝑓(𝑥𝑥)𝑎𝑎
0 𝑑𝑑𝑥𝑥   if 𝑓𝑓(𝑥𝑥) is an even function of 𝑥𝑥 

Note.   (i) 𝑓𝑓(𝑥𝑥) is called odd function if 𝑓𝑓(−𝑥𝑥)  =  −𝑓𝑓(𝑥𝑥) 

 (ii) 𝑓𝑓(𝑥𝑥) is called even function if 𝑓𝑓(−𝑥𝑥)  =  𝑓𝑓(𝑥𝑥) 

Property 6.  ∫ 𝑓𝑓(𝑥𝑥)2𝑎𝑎
0 𝑑𝑑𝑥𝑥 =  ∫ 𝑓𝑓(𝑥𝑥)𝑎𝑎

0 𝑑𝑑𝑥𝑥 +  ∫ 𝑓𝑓(2𝑎𝑎 − 𝑥𝑥)𝑎𝑎
0 𝑑𝑑𝑥𝑥 

2.6.1. Example. Find the values of 

(i) ∫ 𝑥𝑥21
0 𝑑𝑑𝑥𝑥    (ii)  ∫ (3𝑥𝑥 − 1)(2𝑥𝑥 + 1)2

−1 𝑑𝑑𝑥𝑥   (iii)  ∫ 𝑑𝑑𝑥𝑥
𝑥𝑥2−1

3
2  

(iv)  ∫ 𝑠𝑠𝑥𝑥−𝑠𝑠−𝑥𝑥

5
2

0 𝑑𝑑𝑥𝑥 (v)  ∫ 𝑑𝑑𝑥𝑥
√𝑥𝑥+1+√𝑥𝑥

1
0    (vi) ∫ 𝑑𝑑𝑥𝑥

[(𝑎𝑎𝑥𝑥+𝑏𝑏)(1−𝑥𝑥)]2
1

0  

Solution. (i)  ∫ 𝑥𝑥21
0 𝑑𝑑𝑥𝑥 =  �𝑥𝑥

3

3
�

0

1
=  1

3
  

(ii)   ∫ (3𝑥𝑥 − 1)(2𝑥𝑥 + 1)2
−1 𝑑𝑑𝑥𝑥 =  ∫ (6𝑥𝑥2 + 𝑥𝑥 − 1)2

−1 𝑑𝑑𝑥𝑥 

 = 6 �𝑥𝑥
3

3
�
−1

2
+ �𝑥𝑥

2

2
�
−1

2
+ [𝑥𝑥]−1

2 =  16 1
2
 

(iii)  ∫ 𝑑𝑑𝑥𝑥
𝑥𝑥2−1

3
2 =  ∫ 𝑑𝑑𝑥𝑥

𝑥𝑥2−12
3

2  

           = �1
2

log �𝑥𝑥−1
𝑥𝑥+1

��
2

3
=  1

2
�log 2

4
− log 1

3
�  =  1

2
log 3

2
 

(iv)  ∫ 𝑠𝑠𝑥𝑥−𝑠𝑠−𝑥𝑥

5
2

0 𝑑𝑑𝑥𝑥 =  1
5 ∫ 𝑠𝑠𝑥𝑥 − 𝑠𝑠−𝑥𝑥2

0 𝑑𝑑𝑥𝑥  

     = 1
5

[𝑠𝑠𝑥𝑥 + 𝑠𝑠−𝑥𝑥]0
2 =  1

5
�𝑠𝑠 − 1

𝑠𝑠
�

2
 

(v) ∫ 𝑑𝑑𝑥𝑥
√𝑥𝑥+1+√𝑥𝑥

1
0 =  ∫ √𝑥𝑥+1−√𝑥𝑥

�√𝑥𝑥+1+√𝑥𝑥�(√𝑥𝑥+1−√𝑥𝑥)
1

0 𝑑𝑑𝑥𝑥 =  ∫ (√𝑥𝑥 + 1 − √𝑥𝑥)1
0 𝑑𝑑𝑥𝑥  

    = 2
3
�(𝑥𝑥 + 1)3/2 − 𝑥𝑥3/2�

0
1

=  4
3

(√2 − 1).  

(vi) ∫ 𝑑𝑑𝑥𝑥
[𝑎𝑎𝑥𝑥+𝑏𝑏(1−𝑥𝑥)]2

1
0 =  ∫ 𝑑𝑑𝑥𝑥

[(𝑎𝑎−𝑏𝑏)𝑥𝑥+𝑏𝑏]2
1

0 =  ∫ [(𝑎𝑎 − 𝑏𝑏)𝑥𝑥 + 𝑏𝑏]−21
0 𝑑𝑑𝑥𝑥 

       = �[(𝑎𝑎−𝑏𝑏)𝑥𝑥+𝑏𝑏]−1

𝑏𝑏−𝑎𝑎
�

0

1
=  1

𝑏𝑏−𝑎𝑎
�1
𝑎𝑎
− 1

𝑏𝑏
� =  1

𝑎𝑎𝑏𝑏
 

2.6.2. Example. If ∫ 3𝑥𝑥2𝑎𝑎
0 𝑑𝑑𝑥𝑥 = 8, find the value of 𝑎𝑎. 

Solution.  ∫ 3𝑥𝑥2𝑎𝑎
0 𝑑𝑑𝑥𝑥 = 3∫ 𝑥𝑥2𝑎𝑎

0 𝑑𝑑𝑥𝑥 = 3 �𝑥𝑥
3

3
�

0

𝑎𝑎
= 𝑎𝑎3 
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Since  ∫ 3𝑥𝑥2𝑎𝑎
0 𝑑𝑑𝑥𝑥 = 8 

 Implies   𝑎𝑎3 = 8  i.e. 𝑎𝑎 = 2. 

 

2.6.3. Example. Show that when 𝑓𝑓(𝑥𝑥) is of the form 𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑠𝑠𝑥𝑥2, then  

  ∫ 𝑓𝑓(𝑥𝑥)1
0 𝑑𝑑𝑥𝑥 =  1

6
�𝑓𝑓(0) + 4𝑓𝑓 �1

2
� + 𝑓𝑓(1)� 

Solution. 𝑓𝑓(𝑥𝑥)  =  𝑎𝑎 +  𝑏𝑏𝑥𝑥 +  𝑠𝑠𝑥𝑥2 

  𝑓𝑓(0) =  𝑎𝑎,    𝑓𝑓 �1
2
� = 𝑎𝑎 + 1

2
𝑏𝑏 + 1

4
𝑠𝑠 

 𝑓𝑓(1) =  𝑎𝑎 + 𝑏𝑏 + 𝑠𝑠 

RHS =  1
6
�𝑓𝑓(0) + 4𝑓𝑓 �1

2
� + 𝑓𝑓(1)� = 𝑎𝑎 + 𝑏𝑏

2
+ 𝑠𝑠

3
 

LHS =  ∫ 𝑓𝑓(𝑥𝑥)1
0 𝑑𝑑𝑥𝑥 =  ∫ (𝑎𝑎 + 𝑏𝑏𝑥𝑥 + 𝑠𝑠𝑥𝑥2)1

0 𝑑𝑑𝑥𝑥 =  �𝑎𝑎𝑥𝑥 + 𝑏𝑏𝑥𝑥2

2
+ 𝑠𝑠𝑥𝑥3

3
�

0

1
= 𝑎𝑎 + 𝑏𝑏

2
+ 𝑠𝑠

3
  

Hence.  LHS = RHS. 

 

2.6.4. Example. Evaluate the following definite integrals 

 (i)  ∫ 𝑥𝑥
√1−𝑥𝑥2

1/2
0 𝑑𝑑𝑥𝑥    (ii)  ∫ 3𝑥𝑥√5 − 𝑥𝑥22

1 𝑑𝑑𝑥𝑥 (iii)  ∫ 𝑥𝑥√𝑥𝑥 − 438
4 𝑑𝑑𝑥𝑥 

(iv) ∫ log 𝑥𝑥
𝑥𝑥

𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥    (v)  ∫ 𝑑𝑑𝑥𝑥

4+𝑥𝑥−𝑥𝑥2
2

0     (vi)  ∫ 𝑑𝑑𝑥𝑥
(𝑥𝑥−3)√𝑥𝑥+1

15
8  

Solution. (i)  𝐼𝐼 = ∫ 𝑥𝑥
√1−𝑥𝑥2

1/2
0 𝑑𝑑𝑥𝑥   

 Put 1 − 𝑥𝑥2 = 𝑡𝑡,   then   −2𝑥𝑥𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡  or  𝑥𝑥𝑑𝑑𝑥𝑥 = − 1
2
𝑑𝑑𝑡𝑡 

 When 𝑥𝑥 =  0 , 𝑡𝑡 = 1 

When  𝑥𝑥 = 1
2

, 𝑡𝑡 = 3
4
 

Therefore,  𝐼𝐼 = ∫ 𝑥𝑥
√1−𝑥𝑥2

1/2
0 𝑑𝑑𝑥𝑥 =  − 1

2 ∫ 𝑡𝑡−1/23/4
1 𝑑𝑑𝑡𝑡 =  − 1

2
�𝑡𝑡

1/2

1/2
�

1

3/4
= 1 − √3

2
 

(ii)  𝐼𝐼 = ∫ 3𝑥𝑥√5 − 𝑥𝑥22
1 𝑑𝑑𝑥𝑥 

  Put  5 − 𝑥𝑥2 = 𝑡𝑡,   therefore  −2𝑥𝑥𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡   or    𝑥𝑥𝑑𝑑𝑥𝑥 = − 1
2
𝑑𝑑𝑡𝑡 

  When 𝑥𝑥 =  1 , 𝑡𝑡 = 5 − 1 = 4 

When  𝑥𝑥 = 2, 𝑡𝑡 = 5 − 4 = 1 
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Therefore,  𝐼𝐼 = ∫ 3𝑥𝑥√5 − 𝑥𝑥22
1 𝑑𝑑𝑥𝑥 =  − 3

2 ∫ 𝑡𝑡
1
2

1
4 𝑑𝑑𝑡𝑡 =  − 3

2
�𝑡𝑡

3
2

3
2
�

4

1

 

       = −(1 − 4
3
2) =  −(1 − 8) =  7. 

(iii)  𝐼𝐼 = ∫ 𝑥𝑥√𝑥𝑥 − 438
4 𝑑𝑑𝑥𝑥 =  ∫ 𝑥𝑥(𝑥𝑥 − 4)1/38

4  𝑑𝑑𝑥𝑥  

 Put  𝑥𝑥 − 4 = 𝑡𝑡,    therefore,  𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

 When  𝑥𝑥 = 4, 𝑡𝑡 = 0 

 When  𝑥𝑥 = 8, 𝑡𝑡 = 4 

Therefore,     𝐼𝐼 = ∫ (𝑡𝑡 + 4)(𝑡𝑡)1/34
0  𝑑𝑑𝑥𝑥 =  ∫ 𝑡𝑡4/34

0 𝑑𝑑𝑡𝑡 + 4∫ 𝑡𝑡1/34
0 𝑑𝑑𝑡𝑡 

 = 3
7
�𝑡𝑡7/3�

0
4

+ 4 × 3
4
�𝑡𝑡4/3�

0
4
 

 =  3
7

(4)7/3 + 3(4)4/3 =  132
7

(4)1/3. 

(iv)  𝐼𝐼 = ∫ log 𝑥𝑥
𝑥𝑥

𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 

 Put  log 𝑥𝑥 = 𝑡𝑡,     therefore  1
𝑥𝑥
𝑑𝑑𝑥𝑥 = 𝑑𝑑𝑡𝑡 

When   𝑥𝑥 = 𝑎𝑎,    𝑡𝑡 = log𝑎𝑎 

When   𝑥𝑥 = 𝑏𝑏,    𝑡𝑡 = log 𝑏𝑏 

Therefore,      𝐼𝐼 = ∫ 𝑡𝑡log 𝑏𝑏
log 𝑎𝑎 𝑑𝑑𝑡𝑡 =  �𝑡𝑡

2

2
�

log 𝑎𝑎

log 𝑏𝑏
=  1

2
[(log 𝑏𝑏)2 − (log𝑎𝑎)2] 

 = 1
2

(log 𝑏𝑏 + log 𝑎𝑎)(log𝑏𝑏 − log 𝑎𝑎) =  1
2

log(𝑎𝑎𝑏𝑏) log �𝑏𝑏
𝑎𝑎
� 

(v)     𝐼𝐼 = ∫ 𝑑𝑑𝑥𝑥
4+𝑥𝑥−𝑥𝑥2

2
0 =  ∫ 𝑑𝑑𝑥𝑥

4−(𝑥𝑥2−𝑥𝑥)
2

0  

 = ∫ 𝑑𝑑𝑥𝑥

4−�𝑥𝑥−1
2�

2
+1

4

2
0 =  ∫ 𝑑𝑑𝑥𝑥

17
4 −�𝑥𝑥−

1
2�

2
2

0  

   =  ∫ 𝑑𝑑𝑥𝑥

�√17
2 �

2
−�𝑥𝑥−1

2�
2

2
0  

 = 1

2�17
2

�log�
𝑥𝑥−1

2+�17
2

−𝑥𝑥+1
2+�17

2

��

0

2

 

 = 1
√17

�log �√17+3
√17−3

� − log �√17−1
√17+1

�� 

 = 1
√17

log �17+3+4√17
17+3−4√17

� =  1
√17

log �20+4√17
20−4√17

� 
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 = 1
√17

log �4(5+√17)
4(5−√17)

� =  1
√17

log �5+√17
5−√17

× 5+√17
5+√17

� 

 = 1
√17

log �42+10√17
8

� 

 = 1
√17

log �21+5√17
4

� 

(vi)   𝐼𝐼 = ∫ 𝑑𝑑𝑥𝑥
(𝑥𝑥−3)√𝑥𝑥+1

15
8  

  Put  𝑥𝑥 + 1 = 𝑡𝑡2,    then  𝑑𝑑𝑥𝑥 = 2𝑡𝑡𝑑𝑑𝑡𝑡 

When  𝑥𝑥 = 8,    𝑡𝑡2 = 9,    implies 𝑡𝑡 = 3 

When  𝑥𝑥 = 15,    𝑡𝑡2 = 16,    implies 𝑡𝑡 = 4 

Therefore,   𝐼𝐼 = 2 ∫ 𝑑𝑑𝑡𝑡
𝑡𝑡2−22

4
3 = 2. 1

4
�log �𝑡𝑡−2

𝑡𝑡+2
�

3

4
� 

          = 1
2
�log �2

6
� − log 1

5
� = 1

2
�log 1

3
− log 1

5
� 

          = 1
2

log 5
3
 

2.6.5. Example. Evaluate the following 

 (i)  ∫ 𝑥𝑥2𝑠𝑠2𝑥𝑥1
0 𝑑𝑑𝑥𝑥   (ii)  ∫ (𝑥𝑥 − 2)(2𝑥𝑥 + 3)𝑠𝑠𝑥𝑥1

0 𝑑𝑑𝑥𝑥 

(iii)  ∫ 𝑥𝑥2+𝑥𝑥
√2𝑥𝑥+1

4
2 𝑑𝑑𝑥𝑥    (iv)  ∫ 𝑠𝑠𝑥𝑥

𝑥𝑥
𝑠𝑠

1 (1 + 𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥)dx 

Solution.  (i) 𝐼𝐼 = ∫ 𝑥𝑥2𝑠𝑠2𝑥𝑥1
0 𝑑𝑑𝑥𝑥 

 = �𝑥𝑥2 �𝑠𝑠
2𝑥𝑥

2
��

0

1
− ∫ 2𝑥𝑥 �1

2
𝑠𝑠2𝑥𝑥�1

0 𝑑𝑑𝑥𝑥 

 = 1
2

(𝑠𝑠2 − 0) − ���𝑥𝑥𝑠𝑠
2𝑥𝑥

2
��

0

1
− ∫ �1

2
𝑠𝑠2𝑥𝑥�1

0 𝑑𝑑𝑥𝑥� 

 = 1
2
𝑠𝑠2 − �1

2
𝑠𝑠2 − 1

2 ∫ 𝑠𝑠2𝑥𝑥1
0 𝑑𝑑𝑥𝑥� =  1

2 ∫ 𝑠𝑠2𝑥𝑥1
0 𝑑𝑑𝑥𝑥 

 = 1
2
�1

2
𝑠𝑠2𝑥𝑥�

0

1
=  1

2
(𝑠𝑠2 − 1). 

(ii)     𝐼𝐼 = ∫ (𝑥𝑥 − 2)(2𝑥𝑥 + 3)𝑠𝑠𝑥𝑥1
0 𝑑𝑑𝑥𝑥 

 = ∫ (2𝑥𝑥2 − 𝑥𝑥 − 6)𝑠𝑠𝑥𝑥1
0 𝑑𝑑𝑥𝑥 

Integrating by parts, we get 

 = [(2𝑥𝑥2 − 𝑥𝑥 − 6)𝑠𝑠𝑥𝑥]0
1 − ∫ (4𝑥𝑥 − 1)𝑠𝑠𝑥𝑥1

0 𝑑𝑑𝑥𝑥 

 = (2 − 1 − 6)𝑠𝑠 − (−6) − ∫ (4𝑥𝑥 − 1)𝑠𝑠𝑥𝑥1
0 𝑑𝑑𝑥𝑥 
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 = −5𝑠𝑠 + 6 − �|(4𝑥𝑥 − 1)𝑠𝑠𝑥𝑥 |0
1 − ∫ 4𝑠𝑠𝑥𝑥1

0 𝑑𝑑𝑥𝑥� 

 = −5𝑠𝑠 + 6 − [(4 − 1)𝑠𝑠 − (−1) − 4|𝑠𝑠𝑥𝑥 |0
1] 

 = −5𝑠𝑠 + 6[3𝑠𝑠 + 1 − 4(𝑠𝑠 − 1)] 

 = 1 − 4𝑠𝑠. 

(iii)  𝐼𝐼 = ∫ 𝑥𝑥2+𝑥𝑥
√2𝑥𝑥+1

4
2 𝑑𝑑𝑥𝑥 

Integrating by parts taking 𝑥𝑥2 + 𝑥𝑥 as first function and 1
√2𝑥𝑥−1

 as the 2nd function. 

 𝐼𝐼 = �(𝑥𝑥2 + 𝑥𝑥)∫ 𝑑𝑑𝑥𝑥
√2𝑥𝑥+1

�
2

4
− ∫ �(2𝑥𝑥 + 1)∫ 𝑑𝑑𝑥𝑥

√2𝑥𝑥+1
�4

2 𝑑𝑑𝑥𝑥 

 Now  ∫ 𝑑𝑑𝑥𝑥
√2𝑥𝑥+1

=  (2𝑥𝑥+1)−
1
2+1

2.12
=  √2𝑥𝑥 + 1 

Therefore,      𝐼𝐼 = �(𝑥𝑥2 + 𝑥𝑥)√2𝑥𝑥 + 1�
2

4
− ∫ (2𝑥𝑥 + 1)√2𝑥𝑥 + 14

2 𝑑𝑑𝑥𝑥 

 = �60 − 6√5� − ∫ (2𝑥𝑥 + 1)3/24
2 𝑑𝑑𝑥𝑥 

 = �60 − 6√5� − �(2𝑥𝑥+1)5/2

5
�

2

4
 

 = 60 − 6√5 − 1
5
�95/2 − 55/2� = 60 −  6√5 − 243

5
+ 5√5 

 = 57
2
− √5. 

(iv)  𝐼𝐼 = ∫ 𝑠𝑠𝑥𝑥

𝑥𝑥
𝑠𝑠

1 (1 + 𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥)𝑑𝑑𝑥𝑥 =  ∫ 𝑠𝑠𝑥𝑥 �1
𝑥𝑥

+ log 𝑥𝑥�𝑠𝑠
1 𝑑𝑑𝑥𝑥 

 = ∫ 𝑠𝑠𝑥𝑥[𝑓𝑓′(𝑥𝑥) + 𝑓𝑓(𝑥𝑥)]𝑑𝑑𝑥𝑥       where 𝑓𝑓(𝑥𝑥) = log 𝑥𝑥 

 = 𝑠𝑠𝑥𝑥𝑓𝑓(𝑥𝑥) =  𝑠𝑠𝑥𝑥 log 𝑥𝑥 

Therefore,  

 𝐼𝐼 = ∫ 𝑠𝑠𝑥𝑥

𝑥𝑥
𝑠𝑠

1 (1 + 𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥)𝑑𝑑𝑥𝑥 = [𝑠𝑠𝑥𝑥 log 𝑥𝑥]1
𝑠𝑠 =  𝑠𝑠𝑥𝑥 log 𝑠𝑠 −  𝑠𝑠 log 1 =  𝑠𝑠𝑥𝑥   

2.7. Definite Integral as area under the curve. 

Let 𝑓𝑓(𝑥𝑥) be finite and continuous in 𝑎𝑎 ≤  𝑥𝑥 ≤  𝑏𝑏. Then area of the region bounded by 𝑥𝑥axis, 𝑦𝑦 =
 𝑓𝑓(𝑥𝑥) and the ordinates at 𝑥𝑥 =  𝑎𝑎 and 𝑥𝑥 =  𝑏𝑏 is equal to  ∫ 𝑓𝑓 (𝑥𝑥)𝑏𝑏

𝑎𝑎  𝑑𝑑𝑥𝑥. 

Proof. Let 𝐴𝐴𝐵𝐵 be the curve 𝑦𝑦 =  𝑓𝑓(𝑥𝑥) and 𝑃𝑃(𝑥𝑥,𝑦𝑦) be any point on the curve such that 𝑎𝑎 ≤ 

𝑥𝑥 ≤  𝑏𝑏. Let 𝐷𝐷𝐴𝐴 and 𝐶𝐶𝐵𝐵 be the ordinates 𝑥𝑥 =  𝑎𝑎 and 𝑥𝑥 =  𝑏𝑏. 

Take point 𝑄𝑄(𝑥𝑥 + 𝛿𝛿𝑥𝑥,𝑦𝑦 +  𝛿𝛿𝑦𝑦) near to the point 𝑃𝑃(𝑥𝑥,𝑦𝑦). Draw 𝑃𝑃𝑃𝑃 and 𝑄𝑄𝑄𝑄 parallel to 𝑥𝑥-axis. 

Clearly 𝑃𝑃𝑃𝑃 =  𝛿𝛿𝑥𝑥 and 𝑄𝑄𝑃𝑃 =  𝛿𝛿𝑦𝑦. 
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Let 𝑃𝑃 represent the area bounded by the curve 𝑦𝑦 =  𝑓𝑓(𝑥𝑥), 𝑥𝑥-axis and the ordinates 𝐴𝐴𝐷𝐷 (𝑥𝑥 = 𝑎𝑎) and the 
variable ordinate 𝑃𝑃𝑃𝑃. 

 
Therefore, If 𝛿𝛿𝑥𝑥 is increment in 𝑥𝑥, then 𝛿𝛿𝑃𝑃 is increment in 𝑃𝑃. 

It is clear from figure that 𝛿𝛿𝑃𝑃 is the area that lies between the rect. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 and rect. 𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃. 

Also area of rect. 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  𝑦𝑦. 𝛿𝛿𝑥𝑥 and area of rect. 𝑄𝑄𝑄𝑄𝑃𝑃𝑃𝑃 =  (𝑦𝑦 +  𝛿𝛿𝑦𝑦) 𝛿𝛿𝑥𝑥 

Therefore,  𝑦𝑦𝛿𝛿𝑥𝑥 <  𝛿𝛿𝑃𝑃 <  (𝑦𝑦 + 𝛿𝛿𝑦𝑦) 𝛿𝛿𝑥𝑥 

Or    𝑦𝑦 <  𝛿𝛿𝑃𝑃
𝛿𝛿𝑥𝑥

< 𝑦𝑦 + 𝛿𝛿𝑦𝑦 

When 𝑄𝑄 → 𝑃𝑃,  𝛿𝛿𝑥𝑥 → 0,   𝛿𝛿𝑦𝑦 → 0 

And  lim𝛿𝛿𝑥𝑥→0
𝛿𝛿𝑃𝑃
𝛿𝛿𝑥𝑥
→ 𝑑𝑑𝑃𝑃

𝑑𝑑𝑥𝑥
,  we get 

 𝑑𝑑𝑃𝑃
𝑑𝑑𝑥𝑥

= 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) 

Therefore,  ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 =  ∫ 𝑑𝑑𝑃𝑃

𝑑𝑑𝑥𝑥
𝑏𝑏
𝑎𝑎 . 𝑑𝑑𝑥𝑥 =  ∫ 𝑑𝑑𝑠𝑠𝑏𝑏

𝑎𝑎 =  |𝑃𝑃|𝑎𝑎𝑏𝑏 = (𝑃𝑃)𝑥𝑥=𝑏𝑏 − (𝑃𝑃)𝑥𝑥=𝑎𝑎  

But it is clear from the figure, when 𝑥𝑥 =  𝑎𝑎, 𝑃𝑃 =  0, because then 𝑃𝑃𝑃𝑃 and 𝐴𝐴𝐷𝐷 coincide and then 𝑥𝑥 =  𝑏𝑏, 
S = area 𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷 = reqd. area. 

Therefore, 

 ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 = Area 𝐴𝐴𝐵𝐵𝐶𝐶𝐷𝐷. 

Thus the area bounded by the curve 𝑦𝑦 =  𝑓𝑓(𝑥𝑥), the 𝑥𝑥 axis and the ordinates 𝑥𝑥 =  𝑎𝑎 and 𝑥𝑥 = 𝑏𝑏 is 

∫ 𝑓𝑓 (𝑥𝑥)𝑏𝑏
𝑎𝑎  𝑑𝑑𝑥𝑥. 

Remarks. In the figure given, we assumed that 𝑓𝑓(𝑥𝑥 ≥  0) for all 𝑥𝑥 in 𝑎𝑎 ≤  𝑥𝑥 ≤  𝑏𝑏. However, if 

(i) 𝑓𝑓(𝑥𝑥)  ≤  0 for all 𝑥𝑥 in 𝑎𝑎 ≤  𝑥𝑥 ≤  𝑏𝑏, then area bounded by 𝑥𝑥-axis, the curve 𝑦𝑦 =  𝑓𝑓(𝑥𝑥) and the 
ordinate 𝑥𝑥 =  𝑎𝑎 to 𝑥𝑥 =  𝑏𝑏 is given by 

= � 𝑓𝑓 (𝑥𝑥)
𝑏𝑏

𝑎𝑎
 𝑑𝑑𝑥𝑥. 
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(ii) If 𝑓𝑓(𝑥𝑥)  ≥  0 for 𝑎𝑎 ≤  𝑥𝑥 ≤  𝑠𝑠 and 𝑓𝑓 (𝑥𝑥)  ≤  0 for 𝑠𝑠 ≤  𝑥𝑥 ≤  𝑏𝑏, then area bounded by 𝑥𝑥 =  𝑓𝑓(𝑥𝑥), 

𝑥𝑥-axis and the ordinates 𝑥𝑥 =  𝑎𝑎, 𝑥𝑥 =  𝑏𝑏, is 

 

 = ∫ 𝑓𝑓(𝑥𝑥)𝑠𝑠
𝑎𝑎 𝑑𝑑𝑥𝑥 + ∫ −𝑓𝑓(𝑥𝑥)𝑏𝑏

𝑠𝑠 𝑑𝑑𝑥𝑥 

 = ∫ 𝑓𝑓(𝑥𝑥)𝑠𝑠
𝑎𝑎 𝑑𝑑𝑥𝑥 − ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏

𝑠𝑠 𝑑𝑑𝑥𝑥 

(iii) The area of the region bounded by 𝑦𝑦1  =  𝑓𝑓1(𝑥𝑥) and 𝑦𝑦2  =  𝑓𝑓2(𝑥𝑥)  and the ordinates 𝑥𝑥 =  𝑎𝑎 and 
𝑥𝑥 =  𝑏𝑏 is given by 

 =  ∫ 𝑓𝑓2(𝑥𝑥)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 − ∫ 𝑓𝑓1(𝑥𝑥)𝑏𝑏

𝑎𝑎 𝑑𝑑𝑥𝑥 

 
where 𝑓𝑓2(𝑥𝑥) is 𝑦𝑦2 of upper curve and 𝑓𝑓1(𝑥𝑥) is 𝑦𝑦1 of lower curve i.e., 

Required area = ∫ [𝑏𝑏𝑎𝑎 𝑓𝑓2(𝑥𝑥) − 𝑓𝑓1(𝑥𝑥)]𝑑𝑑𝑥𝑥 =  ∫ (𝑦𝑦2 − 𝑦𝑦1)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥. 
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2.7.1. Example.  

(a) Calculate the area under the curve 𝑦𝑦 =  2√ 𝑥𝑥 included between the lines 𝑥𝑥 =  0 and 𝑥𝑥 =  1. 

(b) Find the area under the curve 𝑦𝑦 =  √3𝑥𝑥 +  4 between 𝑥𝑥 =  0 and 𝑥𝑥 =  4. 

Solution.  (a)   𝑦𝑦 =  2 √𝑥𝑥   implies 𝑦𝑦2  =  4𝑥𝑥 

𝑦𝑦 =  2 √𝑥𝑥 is the upper part of the parabola 𝑦𝑦2  =  4𝑥𝑥. We have to find the area of the shaded 
region 𝑂𝑂𝐴𝐴𝐵𝐵. 

 

   Required area  = ∫ 𝑦𝑦1
0 𝑑𝑑𝑥𝑥 

 = ∫ 2 √𝑥𝑥
1

0 𝑑𝑑𝑥𝑥 = 2 �𝑥𝑥
3/2

3/2
�

0

1
=  4

3
 sq. units 

(b) 𝑦𝑦 =  √3𝑥𝑥 +  4 , therefore, 𝑦𝑦2  =  3𝑥𝑥 + 4.  𝑦𝑦 =  √3𝑥𝑥 +  4 is the upper part of the parabola  
𝑦𝑦2  =  3𝑥𝑥 + 4. We have to find the area of the shaded region. 

 

Required area OABC = ∫ 𝑦𝑦4
0 𝑑𝑑𝑥𝑥 = ∫ √3𝑥𝑥 + 44

0 𝑑𝑑𝑥𝑥 

 = 2
9
�(3𝑥𝑥 + 4)3/2�

0
4

=  112
9

 sq. units 

2.7.2. Example. Find the area bounded by   𝑥𝑥 =  𝑙𝑙𝑙𝑙𝑙𝑙𝑠𝑠  𝑥𝑥,   𝑦𝑦 =  0 and 𝑥𝑥 =  2 . 

Solution. Required area ABC = ∫ 𝑦𝑦2
1 𝑑𝑑𝑥𝑥 =  ∫ log 𝑥𝑥2

1 𝑑𝑑𝑥𝑥 

 = |𝑥𝑥 log 𝑥𝑥 − 𝑥𝑥|1
2 = 2 log 2 − 1 = log 4 − 1. 
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2.7.3. Example. Find the area included between two curves 𝑦𝑦2  =  4𝑎𝑎𝑥𝑥 and 𝑥𝑥2  =  4 𝑎𝑎𝑦𝑦. 

Solution. As shown in the figure, we have to find the area 𝑂𝑂𝐴𝐴𝑃𝑃𝐵𝐵𝑂𝑂. 

 
Solving the given two equations simultaneously, we have 

  𝑥𝑥4  =  16𝑎𝑎2𝑦𝑦2  =  16𝑎𝑎2(4𝑎𝑎𝑥𝑥) 

or  𝑥𝑥4 =  64𝑎𝑎3𝑥𝑥  implies  𝑥𝑥4 −  64𝑎𝑎3𝑥𝑥 = 0, 

or  𝑥𝑥(𝑥𝑥3 −  64𝑎𝑎3) = 0 

or   𝑥𝑥 = 0, 𝑥𝑥3 =  64𝑎𝑎3 

Therefore,  𝑥𝑥 = 0 at 𝑂𝑂 and  𝑥𝑥 = 4𝑎𝑎 at 𝐵𝐵. 

Now  

  Area 𝑂𝑂𝐴𝐴𝑃𝑃𝐵𝐵𝑂𝑂 = Area 𝑂𝑂𝐴𝐴𝑃𝑃𝑃𝑃𝑂𝑂 - Area 𝑂𝑂𝐵𝐵𝑃𝑃𝑃𝑃𝑂𝑂 

 = ∫ 𝑦𝑦1
4𝑎𝑎

0 𝑑𝑑𝑥𝑥 − ∫ 𝑦𝑦2
4𝑎𝑎

0 𝑑𝑑𝑥𝑥 =  ∫ 2𝑎𝑎1/2𝑥𝑥1/24𝑎𝑎
0 𝑑𝑑𝑥𝑥 − ∫ 𝑥𝑥2

4𝑎𝑎
4𝑎𝑎

0 𝑑𝑑𝑥𝑥 

 = 2𝑎𝑎1/2 ∫ 𝑥𝑥1/24𝑎𝑎
0 𝑑𝑑𝑥𝑥 −  1

4𝑎𝑎 ∫ 𝑥𝑥24𝑎𝑎
0 𝑑𝑑𝑥𝑥 

 =  2𝑎𝑎1/2 × 2
3
�𝑥𝑥3/2�

0
4𝑎𝑎
− 1

4𝑎𝑎
× 1

3
|𝑥𝑥3|0

4𝑎𝑎  

 = 16
3
𝑎𝑎2sq. units 
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2.7.4. Example.  Find the area cut-off from the parabola 4𝑦𝑦 =  3𝑥𝑥2  by the straight line 2𝑦𝑦 = 3𝑥𝑥 + 12. 

Solution. Let the points of intersection of the parabola and the line be 𝐴𝐴 and 𝐵𝐵 as shown in the figure. 
Draw 𝐴𝐴𝑃𝑃 and 𝐵𝐵𝑃𝑃 perpendiculars to 𝑥𝑥-axis. 

 
Now putting 

 𝑦𝑦 = 3
4
𝑥𝑥2  in 2𝑦𝑦 = 3𝑥𝑥 + 12 

We set     3
2
𝑥𝑥2 = 3𝑥𝑥 + 12  

or   3𝑥𝑥2 − 6𝑥𝑥 + 24 = 0 

or  𝑥𝑥2 − 2𝑥𝑥 − 8 = 0 

or  𝑥𝑥 = 4, 𝑥𝑥 = −2 

Then,      𝑦𝑦 = 12,   𝑦𝑦 = 3. 

The co-ordinates of the point 𝐴𝐴 are (4, 12) and co-ordinates of 𝐵𝐵 are (−2, 3). 

Now,  Required area 𝐴𝐴𝑂𝑂𝐵𝐵 

= Area of trapezium 𝐵𝐵𝑃𝑃𝑃𝑃𝐴𝐴 -[Area 𝐵𝐵𝑃𝑃𝑂𝑂 + Area 𝑂𝑂𝑃𝑃𝐴𝐴] 

But area of trapezium 

= 1
2
(sumof ||sides) Height 

   = 1
2

× (12 +  3) × 6 =  15 × 3 = 45. 

Area 𝐵𝐵𝑃𝑃𝑂𝑂 + Area 𝑂𝑂𝑃𝑃𝐴𝐴  = ∫ 𝑦𝑦4
−2 𝑑𝑑𝑥𝑥 

          = 3
4 ∫ 𝑥𝑥24

−2 𝑑𝑑𝑥𝑥 =  3
4
�𝑥𝑥

3

3
�
−2

4
= 18. 

Hence required area =  45 −  18 =  27 sq. units. 

2.7.5. Example. Find the area bounded by the parabola 𝑦𝑦2  =  2𝑥𝑥 and the ordinates 𝑥𝑥 =  1 and 𝑥𝑥 =  4. 

Solution. The equation of the parabola is 𝑦𝑦2  =  2𝑥𝑥 which is of the form 𝑦𝑦2  =  4𝑎𝑎𝑥𝑥. The parabola is 
symmetrical about 𝑥𝑥-axis and opens towards right. 
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In the first quadrant 𝑦𝑦 ≥  0.  

Required Area = 𝑃𝑃𝑃𝑃𝑃𝑃′𝑃𝑃′ 

= 2 area 𝐴𝐴𝐵𝐵𝑃𝑃𝑃𝑃 

 = 2 ∫ 𝑦𝑦4
1 𝑑𝑑𝑥𝑥 = 2∫ √2𝑥𝑥1/24

1 𝑑𝑑𝑥𝑥 

 = 2√2 �𝑥𝑥
3/2

3/2
�
1

4
=  28√2

3
 sq. units. 

2.7.6. Example. Make a rough sketch of the graph of the function 𝑦𝑦 = 4
𝑥𝑥2  (1 ≤ 𝑥𝑥 ≤ 3), and find the area 

enclosed between the curve, the 𝑥𝑥-axis and the liens 𝑥𝑥 =  1 and 𝑥𝑥 =  3. 

Solution. Given equation of the curve is 

 𝑦𝑦 = 4
𝑥𝑥2 , (1 ≤ 𝑥𝑥 ≤ 3)  

Therefore,  𝑦𝑦 > 0  i.e., the curve lies above the 𝑥𝑥-axis. 

When 𝑥𝑥 = 1, 2, 3,   then 𝑦𝑦 = 4, 1, 0.44 respectively. 

 

  Required area = ∫ 𝑦𝑦3
1 𝑑𝑑𝑥𝑥  

 = ∫ 4
𝑥𝑥2

3
1 𝑑𝑑𝑥𝑥 = 4 �− 1

𝑥𝑥
�
1

3
= 8

3
 sq. units. 

2.7.7. Example. Find the area of the region {(𝑥𝑥,𝑦𝑦) ∶  𝑥𝑥2  ≤  𝑦𝑦 ≤  𝑥𝑥} . 
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Solution. Let us first sketch the region whose area is to be found out.  The required area is the area 
included between the curves  𝑥𝑥2 = 𝑦𝑦 and 𝑦𝑦 = 𝑥𝑥. 

 
Solving these two equations simultaneously, we have 

 𝑥𝑥2 = 𝑥𝑥  implies  𝑥𝑥2 − 𝑥𝑥 = 0 

or 𝑥𝑥(𝑥𝑥 − 1) =  0 

or  𝑥𝑥 = 0, 𝑥𝑥 = 1  

When  𝑥𝑥 = 0, 𝑦𝑦 = 0   and 𝑥𝑥 = 1, 𝑦𝑦 = 1. 

Therefore, these two curves intersect each other at two points 𝑂𝑂(0, 0) and 𝐴𝐴(1,1). 

   Required area =  ∫ 𝑥𝑥1
0 𝑑𝑑𝑥𝑥 −  ∫ 𝑥𝑥21

0 𝑑𝑑𝑥𝑥  

 =  �𝑥𝑥
2

2
�

0

1
− �𝑥𝑥

3

3
�

0

1
=  1

6
 sq. units. 

2.7.8. Example. Find the area of the region {(𝑥𝑥,𝑦𝑦) ∶  𝑥𝑥2  ≤  𝑦𝑦 ≤  |𝑥𝑥| } . 

Solution. Let us first sketch the region whose area is to be found out. 

The required area is the area included between the curves 𝑥𝑥2 =  𝑦𝑦 and 𝑦𝑦 =  |𝑥𝑥|. 

The graph of 𝑥𝑥2 =  𝑦𝑦 is a parabola with vertex (0, 0) and axis y-axis as shown in figure. 

The graph of 𝑦𝑦 =  |𝑥𝑥| is the union of lines 𝑦𝑦 =  𝑥𝑥, 𝑥𝑥 ≥  0 and 𝑦𝑦 =  −𝑥𝑥, 𝑥𝑥 ≤  0. 

The required region is the shaded region. 
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Therefore,   the required area = Area 𝑂𝑂𝐴𝐴𝐵𝐵+Area 𝑂𝑂𝐶𝐶𝐷𝐷 

     2 Area OCD 

 = 2 ∫ 𝑥𝑥1
0 𝑑𝑑𝑥𝑥 − 2∫ 𝑥𝑥21

0 𝑑𝑑𝑥𝑥 

 = 2 �𝑥𝑥
2

2
�

0

1
− 2 �𝑥𝑥

3

3
�

0

1
=  1

3
 sq. units. 

2.7.9. Example. Using integration find the area of the triangular region whose sides have the 

Equation 

𝑦𝑦 =  2𝑥𝑥 + 1    …(1) 

𝑦𝑦 =  3𝑥𝑥 + 1    …(2) 

and        𝑥𝑥 =  4     …(3) 

Solution. Solving (1) and (3), we get 𝑥𝑥 =  4,𝑦𝑦 =  2 × 4 + 1 =  9. 

Therefore,  (4, 9) is the point of intersection of lines (1) and (3). 

Solving (1) and (2), we get 𝑥𝑥 =  0, 𝑦𝑦 =  1. 

 Therefore, (0, 1) is the point of intersection of lines (1) and (2). 

Solving (2) and (3), we get 𝑥𝑥 =  4, 𝑦𝑦 =  3 × 4 +  1 =  13 . 

 Therefore, (4, 13) is the point of intersection of lines (2) and (3) 

 

Required area ABC =  ∫ (3𝑥𝑥 + 1)4
0 𝑑𝑑𝑥𝑥 −  ∫ (2𝑥𝑥 + 1)4

0 𝑑𝑑𝑥𝑥 

        =  �3𝑥𝑥
2

2
+ 𝑥𝑥�

0

4
− �2𝑥𝑥

2

2
+ 𝑥𝑥�

0

4
= 8 sq. units. 

2.8. Learning Curve. 

Learning curve is a technique with the help of which we can estimate the cost and time of production 
process of a product. With passage of time, the production process becomes increasingly mature and 
reaches a steady state. It so happens because with gain in experience with time, time taken to produce 
one unit of a product steadily decreases and in the last attains a stable value.  
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The general form of the learning curve is given by 

 𝑦𝑦 = 𝑓𝑓(𝑥𝑥) =  𝑎𝑎𝑥𝑥−𝑏𝑏  

where 𝑦𝑦 is the average time taken to produce one unit, and 𝑥𝑥 is the number of units produced, 𝑎𝑎 and 𝑏𝑏 
are the constants. 

𝑎𝑎 is defined as the time taken for producing the first unit (𝑥𝑥 =  𝐼𝐼) and 𝑏𝑏 is calculated by using 
the formula 

 𝑏𝑏 = log (𝑙𝑙𝑠𝑠𝑎𝑎𝑙𝑙𝑛𝑛𝑠𝑠𝑛𝑛𝑙𝑙  𝑙𝑙𝑎𝑎𝑡𝑡𝑠𝑠 )
log 2

 

If the learning curve is known, then total time (labour hours) required to produce units numbered from 𝑎𝑎 
to 𝑏𝑏 is given by 

    𝐿𝐿 = ∫ 𝑓𝑓(𝑥𝑥)𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥 =  ∫ 𝐴𝐴. 𝑥𝑥𝑎𝑎𝑏𝑏

𝑎𝑎 𝑑𝑑𝑥𝑥    (another form of learning curve) 

2.8.1. Example. The first batch of 10 dolls is produced in 30 hours. Determine the time taken to produce 
next 10 dolls and again next 20 dolls, assuming a 60% learning rate. Estimate the time taken to produce 
first unit. 

New Time taken to produce one batch  

= Previous time taken to produce one batch × learning rate 

 

No. of dolls Total time (hours) Total increase in time Average time 

0  0 - - 

10 30 30 3 

20 20 �30×60
100

� = 36 6 1.8 

40 20 �36×60
100

� = 43.2 7.2 1.08 

Now,    𝛽𝛽 =  − log(0.6)
log 2

=  −0.7369 

When 𝑥𝑥 =  10 ,𝑦𝑦 =  3 , then 3 =  𝑎𝑎. 10−0.7369  

Solving the equation, we get  𝐴𝐴 =  16.38 hours. 

2.8.2. Example. Because of learning experience, there is a reduction in labour requirement in a firm. 
After producing 36 units, the firm has the learning curve 𝑓𝑓(𝑥𝑥)  =  1000 𝑥𝑥−1/2. Find the labour hours 
required to produce the next 28 units. 

Solution L = ∫ 1000𝑥𝑥−0.564
36 𝑑𝑑𝑥𝑥 

       = 1000[2𝑥𝑥1/2]36
64 = 2000[8 − 6] =  4000 hours. 
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2.8.3. Example. A firm’s learning curve after producing 100 units is given by 𝑓𝑓(𝑥𝑥)  =  2400 𝑥𝑥−0.5 
which is the rate of labour hours required to produce the 𝑥𝑥𝑡𝑡ℎ  unit. Find the hours needed to produce an 
additional 800 units. 

Solution. Labour hours required  

L =∫ 𝑓𝑓(𝑥𝑥)900
100 𝑑𝑑𝑥𝑥 

   =  ∫ 2400𝑥𝑥−0.5900
100 𝑑𝑑𝑥𝑥 = 2400 �𝑥𝑥

1/2

1/2
�

100

900
= 4800[30 − 10] =  96000 hours. 

2.9. Consumer and Producer Surplus. 

 

Consumer surplus is the difference between the price that a consumer is willing to pay and the actual 
price he pays for a commodity. The degree of satisfaction derived from a commodity is a subjective 
matter. 

If 𝐷𝐷𝐷𝐷1 is the market demand curve then demand 𝑥𝑥0 corresponds to the price 𝑝𝑝0. The consumer surplus is 
given by 𝐷𝐷𝐷𝐷1𝑝𝑝0. 

  𝐷𝐷𝐷𝐷1𝑝𝑝0 = Area 𝐷𝐷𝐷𝐷1𝑥𝑥00 −  𝜑𝜑0𝐷𝐷1𝑥𝑥0𝑂𝑂 

 =  ∫ 𝑓𝑓(𝑥𝑥)𝑥𝑥0
0 𝑑𝑑𝑥𝑥 − 𝑝𝑝0𝑥𝑥0 

where 𝑓𝑓(𝑥𝑥) is the demand function. 

It is assumed that the area is defined at 𝑥𝑥 =  0 and that the satisfaction is measurable in terms of price 
for all consumers. In other words, we assume that utility function is same for all consumers and 
marginal utility of money is constant. 

2.9.1. Example. Find the consumer surplus if the demand function is 𝑝𝑝 =  25 − 2𝑥𝑥 and the surplus 
function is 4𝑝𝑝 =  10 + 𝑥𝑥. 

Solution. First find the equilibrium price 𝑝𝑝0 and equilibrium demand, 𝑥𝑥0 by solving the above two 
equations simultaneously, we have 

 𝑥𝑥0 = 10  and 𝑝𝑝0 = 5 

Now consumer surplus = ∫ 𝑓𝑓(𝑥𝑥)𝑥𝑥0
0 𝑑𝑑𝑥𝑥 − 𝑝𝑝0𝑥𝑥0 

 = ∫ (25 − 2𝑥𝑥)10
0 𝑑𝑑𝑥𝑥 − 5 × 10  

 = [25𝑥𝑥 − 𝑥𝑥2]0
10 − 50 = 100. 

2.10. Producer Surplus 

Producer surplus is the difference in the prices a producer expects to get and the price which he actually 
gets for a commodity. 
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If 𝑃𝑃𝑃𝑃1 is the market supply curve and if 𝑥𝑥0 is the supply at the market price 𝑝𝑝0, the producer surplus is 
the area 𝑃𝑃𝑃𝑃. 

 𝑃𝑃𝑃𝑃 = Area  𝑃𝑃𝑃𝑃1𝑃𝑃0  =  𝑝𝑝0𝑥𝑥0  −   ∫ 𝑙𝑙(𝑥𝑥)𝑥𝑥
0 𝑑𝑑𝑥𝑥 

where 𝑙𝑙(𝑥𝑥) is the supply function. 

2.10.1. Example. Find the producer surplus for the supply function 𝑝𝑝2  −  𝑥𝑥 =  9  when 𝑥𝑥0 =  7 

Solution. We are given 𝑝𝑝2  −  𝑥𝑥 =  9  or 𝑝𝑝0
2  −  𝑥𝑥0  =  9 

Also given 𝑥𝑥0 =  7 

Therefore,  𝑝𝑝0 =  7 

Thus, 

 𝑃𝑃𝑃𝑃 =  𝑝𝑝0𝑥𝑥0  −   ∫ 𝑙𝑙(𝑥𝑥)𝑥𝑥
0 𝑑𝑑𝑥𝑥 

              = 4 × 7 − ∫ (𝑥𝑥 + 9)1/27
0 𝑑𝑑𝑥𝑥 

       = 28 − �2
3

(𝑥𝑥 + 9)3/2�
0

7
=  10

3
. 

2.11. Leontief Input-Output Model. 

Consider a model consisting of n production units and each unit produces only one kind of product. 
Each unit in the model uses the output of these n units as input. Also some part of output of each unit is 
used by other consumers, we shall call those parts as final demand of the unit. The sum of all the outputs 
of a particular unit is known as total output of that unit. Now, we have to determine the new total output 
of a unit if the final demand changes assuming that the resources of the model does not change. Here 
comes the role of Leontief input-output model. We illustrate the process for three production units.  

1. Avaiblable data. Let 1 2 3, ,P P P  be three production units and i jx denote the part of output of the unit Pi 
used as input by the units jP . Let bi denotes the final demand of unit Pi and Xi denotes the total output of 
unit Pi. This data can be represented as:  

 Production 
Unit Receiving unit Final 

demand 
Total 
output 

 P1 P2 P3 

1

2

3

P
P
P

 
11

21

31

x
x
x

 
12

22

32

x
x
x

 
13

23

33

x
x
x

 
1

2

3

b
b
b

 
1

2

3

X
X
X

 

2. Construction of Technology matrix. The ratio i j

j

x
X

 is denoted by i ja and is known as input-output 

coefficients or technical coefficients. For example,  

     11 12 13
11 12 13

1 2 3
, ,x x xa a a

X X X
= = =     
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Then the matrix A of all these input-output coefficients is called Technology matrix or matrix of 
technical coefficients. Thus the technical matrix is  

     
11 12 13

21 22 23

31 32 33

a a a
A a a a

a a a

 
 =  
  

 

3. Simon-Hawkins Conditions.  The conditions for the system to be viable are:  

(i) The elements on the principal diagonal of Leontief matrix are all positive i.e.,  11 221 , 1 ,...a a− −  are all 
positive.  

(ii) The determinant of Leontief matrix i.e., | |I A−  is positive.  

If these two conditions are not satisfied, then there is no solution of the above system. These conditions 
are known as (Simon-Hawkins conditions for viability of system)  

2.11.1. Example. For a two unit economy with production units X and Y, the inter unital demand and 
final demand are as follows :  

   
 
 Production 
Unit 

Receiving unit 
Final 
demand 

Total 
output P1 P2 

1

2

P
P

 30
20

 

 

40
10

 

 

50
30

 120
60

 

(i)   Find the technical coefficients.  

(ii)  Find the matrix of technical coefficients.  

(iii)  Find the Leontief matrix  

(iv)  Verify Simon-Hawkins conditions for viability of the system.  

Solution. The given table is  

            Production 

Unit 
Receiving unit Final 

demand 
Total 
output 

 P1 P2 

P1   

P2 

11

12

30
20

x
x

=
=

 

 

 

21

22

40
10

x
x

=
=

 

 

 

1

2

50
30

b
b

=
=

 

 

 

1

2

120
60

X
X

=
=
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(i) Here n = 2, technical co-efficients are 11 21 12 22, ,a a a a  

Thus    11
11

1

30 1
120 4

xa
X

= = =  

    21
21

1

20 1
120 6

xa
X

= = =  

    12
12

2

40 2
60 3

xa
X

= = =  

    22
22

2

10 1
60 6

xa
X

= = =  

(ii) Matrix of technical coefficients  11 12

21 22

1 2
4 3
1 1
6 6

a a
A

a a

 
  

= =   
   

  

  

(iii) Leontief Matrix  
1 2

1 0 4 3
0 1 1 1

6 6

I A

 
  

− = −   
   

  

= 
3 2
4 3
1 5
6 6

 − 
 
 −  

 

(iv) Elements on principal diagonal of Leontief matrix are 3 5and
4 6

 which are positive . Also, I A−

3 2
374 3 0

1 5 72
6 6

−
= = >

−
 

Hence Simon-Hawkins conditions are verified.  

2.12. Check Your Progress. 

1. Evaluate   (i)   ∫(4𝑥𝑥3 + 3𝑥𝑥2 − 2𝑥𝑥 + 5)𝑑𝑑𝑥𝑥  (ii)  ∫ �√𝑥𝑥 − 1
2
𝑥𝑥 + 2

√𝑥𝑥
� 𝑑𝑑𝑥𝑥 

 (iii)  ∫ �𝑥𝑥
4+1
𝑥𝑥2 �𝑑𝑑𝑥𝑥     (iv)  ∫ �𝑥𝑥 − 1

𝑥𝑥
�

3
𝑑𝑑𝑥𝑥 

  (v)  ∫ �2𝑥𝑥 + 1
2
𝑠𝑠−𝑥𝑥 + 4

𝑥𝑥
− 1

√𝑥𝑥3 �𝑑𝑑𝑥𝑥  (vi)  ∫ 𝑥𝑥
𝑥𝑥−3

𝑑𝑑𝑥𝑥 

(vii)  ∫�𝑠𝑠𝑎𝑎 log 𝑥𝑥 + 𝑠𝑠𝑥𝑥 log 𝑎𝑎�𝑑𝑑𝑥𝑥  (viii)  ∫ 1
√5𝑥𝑥+3−√5𝑥𝑥+2

𝑑𝑑𝑥𝑥 

(ix)  ∫ �𝑠𝑠3𝑥𝑥 − 2𝑠𝑠𝑥𝑥 + 1
𝑥𝑥
� 𝑑𝑑𝑥𝑥   (x)  ∫

�𝑥𝑥3+1�(𝑥𝑥−2)
𝑥𝑥2−𝑥𝑥−2

𝑑𝑑𝑥𝑥 

 (xi)  ∫
(𝑎𝑎𝑥𝑥+𝑏𝑏𝑥𝑥 )2

𝑎𝑎𝑥𝑥𝑏𝑏𝑥𝑥
𝑑𝑑𝑥𝑥    (xii)  ∫ 1

√𝑥𝑥+1+√𝑥𝑥−1
𝑑𝑑𝑥𝑥  

2. Evaluation  (i) ∫ 3𝑥𝑥+5
(3𝑥𝑥2+10𝑥𝑥+2)2/3 𝑑𝑑𝑥𝑥   (ii) ∫�2+log 𝑥𝑥

𝑥𝑥
𝑑𝑑𝑥𝑥 

  (iii) ∫ 𝑠𝑠𝑥𝑥−𝑠𝑠−𝑥𝑥

𝑠𝑠𝑥𝑥+𝑠𝑠−𝑥𝑥
𝑑𝑑𝑥𝑥   (iv)  ∫ 𝑑𝑑𝑥𝑥

𝑥𝑥2−𝑎𝑎2 

(v)  ∫𝑥𝑥(𝑥𝑥2 + 4)5 𝑑𝑑𝑥𝑥  (vi)  ∫ 8𝑥𝑥2

(𝑥𝑥3+2)3 𝑑𝑑𝑥𝑥 

(vii)  ∫ 𝑥𝑥3

(𝑥𝑥2+1)3 𝑑𝑑𝑥𝑥   (viii)  ∫ 𝑥𝑥+2
√𝑥𝑥2+4𝑥𝑥+5

𝑑𝑑𝑥𝑥 
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(ix)  ∫
(𝑥𝑥+1)(𝑥𝑥+log 𝑥𝑥)3

3𝑥𝑥
𝑑𝑑𝑥𝑥  (x)  ∫ 𝑠𝑠𝑥𝑥−1+𝑥𝑥𝑠𝑠−1

𝑠𝑠𝑥𝑥+𝑥𝑥𝑠𝑠
𝑑𝑑𝑥𝑥 

(xi)  ∫ 1
(1+𝑠𝑠𝑥𝑥 )(1+𝑠𝑠−𝑥𝑥 )𝑑𝑑𝑥𝑥  (xii) ∫(𝑥𝑥 + 1)2𝑥𝑥2+2𝑥𝑥 𝑑𝑑𝑥𝑥 

3.  Evaluate  (i) ∫𝑥𝑥2𝑠𝑠3𝑥𝑥 𝑑𝑑𝑥𝑥     (ii) ∫𝑥𝑥𝑛𝑛 log 𝑥𝑥 𝑑𝑑𝑥𝑥 

  (iii) ∫ 𝑥𝑥𝑠𝑠𝑥𝑥

(𝑥𝑥+1)2 𝑑𝑑𝑥𝑥     (iv)  ∫ log 𝑥𝑥 𝑑𝑑𝑥𝑥 

  (v)  ∫√4𝑥𝑥2 − 9𝑑𝑑𝑥𝑥    (vi)  ∫ 𝑑𝑑𝑥𝑥
(𝑥𝑥+1)√𝑥𝑥+2

 

(vii)  ∫ 𝑑𝑑𝑥𝑥
(𝑥𝑥+1)√𝑥𝑥2+𝑥𝑥+1

    (viii) ∫ 𝑑𝑑𝑥𝑥
(𝑥𝑥2−1)√𝑥𝑥2+1

 

(ix)  ∫ 𝑥𝑥 log(1 + 𝑥𝑥)𝑑𝑑𝑥𝑥   (x)  ∫𝑥𝑥3𝑎𝑎𝑥𝑥2𝑑𝑑𝑥𝑥 

4. Evaluate.   (i)  ∫ 𝑥𝑥
(𝑥𝑥−1)(𝑥𝑥−2)

𝑑𝑑𝑥𝑥   (ii)  ∫ 2𝑥𝑥
(𝑥𝑥2+1)(𝑥𝑥2+3)

𝑑𝑑𝑥𝑥 

(iii)  ∫ 3𝑥𝑥+5
𝑥𝑥4−𝑥𝑥3−𝑥𝑥2+1

𝑑𝑑𝑥𝑥    (iv) ∫ 𝑥𝑥2+1
(2𝑥𝑥+1)(𝑥𝑥+1)(𝑥𝑥−1)

𝑑𝑑𝑥𝑥 

(v)  ∫ 26𝑥𝑥+6
8−10𝑥𝑥−3𝑥𝑥2 𝑑𝑑𝑥𝑥    (vi)  ∫ 2𝑥𝑥3−3𝑥𝑥2−9𝑥𝑥+1

2𝑥𝑥2−𝑥𝑥−10
𝑑𝑑𝑥𝑥 

(vii)  ∫ 𝑑𝑑𝑥𝑥
(𝑥𝑥+1)2(𝑥𝑥2+1)

𝑑𝑑𝑥𝑥   (viii)  ∫ 𝑑𝑑𝑥𝑥
(𝑠𝑠𝑥𝑥−1)2 

(ix)  ∫ 𝑥𝑥2+𝑥𝑥+1
(𝑥𝑥−3)3 𝑑𝑑𝑥𝑥    (x)  ∫ 𝑎𝑎𝑥𝑥2+𝑏𝑏𝑥𝑥+𝑠𝑠

(𝑥𝑥−𝑎𝑎)(𝑥𝑥−𝑏𝑏)(𝑥𝑥−𝑠𝑠)
𝑑𝑑𝑥𝑥 

5. Evaluate the following: 

(i)  ∫ (3𝑥𝑥 − 2)24
2 𝑑𝑑𝑥𝑥    (ii)  ∫ 1

𝑥𝑥+2
10

6 𝑑𝑑𝑥𝑥   (iii)  ∫ √2𝑥𝑥 + 311
3 𝑑𝑑𝑥𝑥 

(iv) ∫ √𝑥𝑥
√𝑥𝑥+√2−𝑥𝑥

2
0 𝑑𝑑𝑥𝑥    (v)  ∫ 𝑑𝑑𝑥𝑥

(𝑥𝑥+1)√𝑥𝑥2−1
2

0     (vi)  ∫ 3𝑥𝑥3−4𝑥𝑥2+1
√𝑥𝑥

1
0 𝑑𝑑𝑥𝑥 

6. Evaluate the following : 

(i)  ∫ 𝑥𝑥5

1+𝑥𝑥6
1

0 𝑑𝑑𝑥𝑥    (ii)  ∫ 𝑥𝑥√3𝑥𝑥 − 22
1 𝑑𝑑𝑥𝑥   (iii)  ∫ 6𝑥𝑥2−1

√2𝑥𝑥3−𝑥𝑥−2
4

2 𝑑𝑑𝑥𝑥 

(iv) ∫ (log 𝑥𝑥)2

𝑥𝑥
2

1 𝑑𝑑𝑥𝑥   

7. Evaluate the following : 

(i)  ∫ 𝑥𝑥𝑠𝑠𝑥𝑥1
0 𝑑𝑑𝑥𝑥    (ii)  ∫ 𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙 �1 + 𝑥𝑥

2
�1

0 𝑑𝑑𝑥𝑥   (iii)  ∫ 𝑥𝑥2𝑠𝑠𝑥𝑥1
0 𝑑𝑑𝑥𝑥 

(iv) ∫ log 𝑥𝑥
𝑥𝑥2

𝑏𝑏
𝑎𝑎 𝑑𝑑𝑥𝑥   

8. Find the area of the region included between the parabola 𝑦𝑦 =  3
4
𝑥𝑥2 and the line        3𝑥𝑥 − 2𝑦𝑦 +

12 = 0. 
9. Find the area bounded by the curve 𝑦𝑦 =  𝑥𝑥2  and the line 𝑦𝑦 =  𝑥𝑥. 



Integration 67 
10. Make a rough sketch of the graph of the function 𝑦𝑦 =  9 − 𝑥𝑥2, 0 ≤  𝑥𝑥 ≤  3 and   determine the area 

enclosed between the curve and the axis. 
11. Using integration, find the area of the region bounded by the triangle whose vertices are (1, 0), (2, 2) 

and (3,1). 
12. Find the area of the region bounded by 𝑦𝑦 =  −1, 𝑦𝑦 = 2, 𝑥𝑥 = 𝑦𝑦2, 𝑥𝑥 = 0.  
13. Find the area between the parabola 𝑦𝑦2  =  𝑥𝑥 and the line 𝑥𝑥 =  4.  
14. Find the area bounded by the curve 𝑦𝑦 =  𝑥𝑥2 − 4 and the lines 𝑦𝑦 =  0 and 𝑦𝑦 =  5. 
15. Find the area of the region enclosed between the curve 𝑦𝑦 =  𝑥𝑥2 + 1 and the line 𝑦𝑦 =  2𝑥𝑥 + 1. 
16. Find the area bounded by the curve 𝑥𝑥 =  𝑎𝑎𝑡𝑡2, 𝑦𝑦 =  2𝑎𝑎𝑡𝑡 between the ordinates corresponding to 

𝑡𝑡 = 1 and 𝑡𝑡 = 2. 
17. Find the area of the region enclosed by the parabola 𝑦𝑦2  =  4𝑎𝑎𝑥𝑥 and chord 𝑦𝑦 =  𝑚𝑚𝑥𝑥. 

Answers. 

1.  (i) 𝑥𝑥4 + 𝑥𝑥3 − 𝑥𝑥2 + 5𝑥𝑥 + 𝐶𝐶  (ii) 2
3
𝑥𝑥3/2 − 1

4
𝑥𝑥2 + 4√𝑥𝑥 + 𝐶𝐶 

(iii) 𝑥𝑥
3

3
− 1

𝑥𝑥
+ 𝐶𝐶    (iv) 𝑥𝑥

4

4
− 3

2
𝑥𝑥2 + 3 log 𝑥𝑥 +  1

2𝑥𝑥2 + 𝐶𝐶  

(v) 2𝑥𝑥

𝑙𝑙𝑙𝑙𝑙𝑙2
− 1

2
𝑠𝑠−𝑥𝑥 + 4 log 𝑥𝑥 − 3

2
𝑥𝑥2/3 + 𝐶𝐶  (vi) 𝑥𝑥 + log|𝑥𝑥 − 3| + 𝐶𝐶 

(vii) 𝑥𝑥
𝑎𝑎+1

𝑎𝑎+1
+ 𝑎𝑎𝑥𝑥

log 𝑎𝑎
+ 𝐶𝐶    (viii) 2

15
�(5𝑥𝑥 + 3)

3
2 − (5𝑥𝑥 + 2)

3
2� + 𝐶𝐶 

(ix)  𝑠𝑠
3𝑥𝑥

3
− 2𝑠𝑠𝑥𝑥 + log|𝑥𝑥| + 𝐶𝐶   (x) 𝑥𝑥

3

3
− 𝑥𝑥2

2
+ 𝑥𝑥 + 𝐶𝐶 

(xi)  
�𝑎𝑎𝑏𝑏�

𝑥𝑥

log 𝑎𝑎𝑏𝑏
+ 2𝑥𝑥 +

�𝑏𝑏𝑎𝑎�
𝑥𝑥

log 𝑏𝑏𝑎𝑎
+ 𝐶𝐶   (xii)  1

3
(𝑥𝑥 + 1)3/2 − 1

3
(𝑥𝑥 − 1)3/2 + 𝐶𝐶 

2.  (i)  3
2

(3𝑥𝑥2 + 10𝑥𝑥 + 2)
1
3 + 𝐶𝐶  (ii)  2

3
(2 + log 𝑥𝑥)

3
2 + 𝐶𝐶  (iii)  log|𝑠𝑠𝑥𝑥 + 𝑠𝑠−𝑥𝑥 | + 𝐶𝐶 

(iv)  1
2𝑎𝑎
𝑙𝑙𝑙𝑙𝑙𝑙 |𝑥𝑥−𝑎𝑎|

|𝑥𝑥+𝑎𝑎|
+ 𝐶𝐶    (v)  1

12
(𝑥𝑥2 + 4)6   (vi) 4

3(𝑥𝑥2+2)2 

(vii)  − 1
4

2𝑥𝑥2+1
(𝑥𝑥2+1)2    (viii) 1

15
(1 + 𝑥𝑥6)5/2 + 𝐶𝐶  (ix) 1

12
(𝑥𝑥 + log 𝑥𝑥)4 + 𝐶𝐶 

(x)  1
𝑠𝑠

log|𝑠𝑠𝑥𝑥 + 𝑥𝑥𝑠𝑠 | + 𝐶𝐶   (xi) − 1
1+𝑠𝑠𝑥𝑥

+ 𝐶𝐶   (xii)  2
𝑥𝑥2+2𝑥𝑥

2 log 2
+ 𝐶𝐶 

3.  (i) 𝑥𝑥
2𝑠𝑠3𝑥𝑥

3
− 2𝑥𝑥𝑠𝑠3𝑥𝑥

9
+ 2

27
𝑠𝑠3𝑥𝑥    (ii) log 𝑥𝑥  𝑥𝑥

𝑛𝑛+1

𝑛𝑛+1
− 𝑥𝑥𝑛𝑛+1

(𝑛𝑛+1)2  (iii) 1
𝑥𝑥+1

𝑠𝑠𝑥𝑥  

     (iv)  𝑥𝑥(log𝑥𝑥)2 − 2𝑥𝑥𝑙𝑙𝑙𝑙𝑙𝑙 𝑥𝑥 + 2𝑥𝑥     (v)  √4𝑥𝑥2−9
2

− 9
4

log |2𝑥𝑥 + √4𝑥𝑥2 − 9| + 𝐶𝐶 

     (vi)  log �√𝑥𝑥+2−1
√𝑥𝑥+2+1

�+ 𝐶𝐶    (vii)  1 − log � 1
𝑥𝑥+1

− 1
2

+ √𝑥𝑥2+𝑥𝑥+1
𝑥𝑥+1

� + 𝐶𝐶 

     (viii)  − 1
2√2

log �√2𝑥𝑥+√𝑥𝑥2+1
√2𝑥𝑥−√𝑥𝑥2+1

�+ 𝐶𝐶    (ix) 1
2

(𝑥𝑥2 − 1) log(1 + 𝑥𝑥) − 1
4
𝑥𝑥2 + 1

2
𝑥𝑥 + 𝐶𝐶 
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     (x)  𝑥𝑥
2𝑎𝑎𝑥𝑥

2

2 log 𝑎𝑎
− 𝑎𝑎𝑥𝑥

2

2(log 𝑎𝑎)2 + 𝐶𝐶 

4.  (i) – log|𝑥𝑥 − 1| + 2 log |𝑥𝑥 − 2| + 𝐶𝐶   (ii) 1
2

log �𝑥𝑥
2+1

𝑥𝑥2+3
� + 𝐶𝐶 

   (iii) 1
2
𝑙𝑙𝑙𝑙𝑙𝑙 �𝑥𝑥+1

𝑥𝑥−1
� − 4

𝑥𝑥−1
+ 𝐶𝐶   (iv) − 5

6
log|2𝑥𝑥 + 1| + 1

3
log |𝑥𝑥 − 1| + log|𝑥𝑥 + 1| + 𝐶𝐶 

   (v)  − 5
3

log|3𝑥𝑥 − 2| − 7 log|𝑥𝑥 + 4| + 𝐶𝐶  (vi) 𝑥𝑥
2

2
− 𝑥𝑥 + log � 𝑥𝑥+2

2𝑥𝑥−5
� + 𝐶𝐶 

   (vii) 1
2

log |𝑥𝑥 + 1| − 1
2(𝑥𝑥+1)

− 1
4

log |𝑥𝑥2 + 1| + 𝐶𝐶 

  (viii)  log � 𝑠𝑠𝑥𝑥

𝑠𝑠𝑥𝑥−1
� − 1

𝑠𝑠𝑥𝑥−1
+ 𝐶𝐶   (ix)  log |𝑥𝑥 − 3| − 7

𝑥𝑥−3
− 13

2(𝑥𝑥−3)2 + 𝐶𝐶 

  (x)  𝑎𝑎3 + 𝑎𝑎𝑏𝑏 + 𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙 |𝑥𝑥 − 𝑎𝑎| + 𝑎𝑎𝑏𝑏2+𝑏𝑏2+𝑠𝑠
(𝑏𝑏−𝑎𝑎)(𝑏𝑏−𝑠𝑠)

log |𝑥𝑥 − 𝑏𝑏| + 𝑠𝑠(𝑎𝑎𝑠𝑠+𝑏𝑏+1)
(𝑠𝑠−𝑎𝑎)(𝑠𝑠−𝑏𝑏)

log |𝑥𝑥 − 𝑠𝑠| + 𝑘𝑘 

5.   (i)  104       (ii)  log 3
2
         (iii) 98

3
       (iv)        (v)  1

√3
   (vi)  − 52

15
 

6.   (i)  1
6

log 2       (ii)  326
135

         (iii) 2(√122 − √12)       (iv)  1
3

(log 2)3   

7.   (i)         (ii)  3
4

+ 2
3

log 2
3
         (iii) 𝑠𝑠−2       (iv)  log 𝑎𝑎+1

log 𝑎𝑎
− log 𝑏𝑏+1

log 𝑏𝑏
   

8.  27    9.  1
6
    10. 18    11. 3

2
 

12.  15
4

    13.  32
3

    14..  76
3

   15. 4
3
 

16.  56𝑎𝑎2

3
   17.  8𝑎𝑎2

3𝑚𝑚2 

2.13. Summary. In this chapter, we derived methods to find the integration of various functions by 
using various methods. Also, Leontiff input-output model is discussed. 
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